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ABSTRACT

BACKGROUND: Environmental exposures play a crucial role in shaping children’s behavioral development. However,
the mechanisms by which these exposures interact with brain functional connectivity and influence behavior remain
unexplored.

METHODS: We investigated the comprehensive environment-brain-behavior triple interactions through rigorous
association, prediction, and mediation analyses, while adjusting for multiple confounders. Particularly, we
examined the predictive power of brain functional network connectivity (FNC) and 41 environmental exposures for
23 behaviors related to cognitive ability and mental health in 7655 children selected from the Adolescent Brain
Cognitive Development (ABCD) Study at both baseline and follow-up.

RESULTS: FNC demonstrated more predictability for cognitive abilities than for mental health, with cross-validation
from the UK Biobank study (N = 20,852), highlighting the importance of thalamus and hippocampus in longitudinal
prediction, while FNC+environment demonstrated more predictive power than FNC in both cross-sectional and
longitudinal prediction of all behaviors, especially for mental health (- = 0.32-0.63). We found that family and
neighborhood exposures were common critical environmental influencers on cognitive ability and mental health,
which can be mediated by FNC significantly. Healthy perinatal development was a unique protective factor for
higher cognitive ability, whereas sleep problems, family conflicts, and adverse school environments specifically
increased risk of poor mental health.

CONCLUSIONS: This work revealed comprehensive environment-brain-behavior triple interactions based on the
ABCD Study, identified cognitive control and default mode networks as the most predictive functional networks
for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on

childhood development, in which sleep problems were the most prominent factors affecting mental health.

https://doi.org/10.1016/j.biopsych.2023.12.019

Adolescence has long been known as an important time for
developing cognitive skills and is also a period when most
mental disorders initially manifest (1). Moreover, a child’s brain
undergoes a growth spurt in structural and functional matu-
ration, building a foundation for behavioral outcomes (2).
Despite the well-known fact that environmental exposures play
a critical role in influencing behaviors, we have a very limited
understanding of how these exposures interact with the
brain and in turn shape our behaviors, especially during
adolescence (3).

Recent years have seen rapid growth of interest in exam-
ining the neural basis through which environmental exposures
can have enduring effects on behaviors (4-6). Nevertheless,
research in this context has been dominated by brain structural
features in children (4,7), with less focus on brain functional
measures. This is partly due to the easier access and feasibility
of structural magnetic resonance imaging (MRI) scans, though
functional features have shown more predictive power for
high-order cognition (8). As a measure that can well charac-
terize individual variability (9,10), functional network
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connectivity (FNC) quantifies the temporal statistical de-
pendencies between functional activation among different
brain networks, providing insightful correlations between het-
erogeneous personal behaviors with the brain (11). The limited
evidence available on relationships between brain, environ-
ment, and behaviors (5,12) calls for a more comprehensive
investigation into how different brain functional networks may
connect or even mediate associations between diverse envi-
ronmental exposures and a wide range of childhood behaviors.

Furthermore, previous environment-behavior association
studies often focused on a single behavioral domain (e.g.,
cognitive ability) or only a few environmental domains (4,6,13),
thus not capturing the broader relationships between various
factors. For example, sufficient sleep (14) and high socioeco-
nomic status (4) may improve cognitive ability, while long-term
exposure to air pollution (15) and low family income (5) can
have the opposite impact. Perinatal factors such as birth
weight and postnatal growth have been associated with
cognitive ability but not mental health (16), whereas higher
community noise impaired both (17). Additionally, Alnzes et al.
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(18) revealed 3 brain anatomical covariation patterns associ-
ated with perinatal complications, sociocognitive stratification,
and urbanicity, and Modabbernia et al. (12) found that socio-
economic circumstances, perinatal events, and cognition had
the most reliable covariations with multiple brain measures.
However, a comprehensive exploration of environment-brain-
behavior triple interactions, which may provide constructive
insights into risky and protective environmental exposures for
children’s brain and behavioral development, is still lacking.

Beyond association analysis, by revealing the predictive
power of FNC patterns and environmental exposures on mul-
tiple behaviors, thereby establishing their utility in longitudinal
individual evaluation, we may identify imaging signatures with
promising translational impact that could be missed by existing
studies (19,20). We applied NeuroMark (9), a fully automated
independent component analysis framework, to the resting-
state functional MRI (fMRI) data to generate the data-
adaptive FNC patterns that serve as the predictive brain sig-
natures. Further exploration of how these patterns mediate the
effects of environmental exposures on cognition and mental
health may facilitate the elucidation of the neural un-
derpinnings of positive and negative developmental trajec-
tories in children.

Specifically, we included 7655 typically developing children
from the Adolescent Brain Cognitive Development (ABCD)
Study with 41 environmental exposures across 5 domains
[spanning perinatal, family, school, neighborhood, and indi-
vidual lifestyle (12)] and 23 behaviors of two types—10
cognitive abilities and 13 mental health measures—both at
baseline and longitudinally. Figure 1 displays the whole
research design including 4 steps (more details in Figure S1 in
Supplement 1): 1) identify the FNCs most susceptible to
environmental influences and determine the environmental
exposures impacting most FNCs by association analysis;
2) build environment-behavior association maps and identify
the shared and unique environmental exposures affecting
cognitive abilities and mental health, both at baseline and
longitudinally; 3) characterize dominating functional networks,
FNC signatures, and critical environmental exposures that
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support individual-level prediction of cognitive abilities and
mental health (at baseline and longitudinally), which were also
externally validated via UK Biobank data; and 4) examine
whether and to what extent this predictome (21) of FNC sig-
natures mediates the environment-behavior associations.

METHODS AND MATERIALS

Participants From the ABCD Study

This study used data from a population-based sample of 9- to
10-year-olds from 21 U.S. study sites in the ongoing ABCD
Study (release 3.0), including neuroimaging and behavioral
data collected at baseline and longitudinally (22). Informed
written consent was obtained from children and their parents,
with ethical approval from each research site’s institutional
review boards. The current study included 7655 participants
after rigorous data quality control (Figure S2 in Supplement 1)
(28).

fMRI Data Acquisition and Processing

Resting-state fMRI data from the ABCD Study were acquired
and preprocessed as previously described and detailed in
Supplement 1 (22). The preprocessed data were decomposed
into 53 subject-specific independent components (Figure S3 in
Supplement 1) and their corresponding time courses via a
spatially constrained single-subject independent component
analysis method with the Neuromark_fMRI_1.0 template as
spatial references (available in GIFT at http://trendscenter.org/
software/gift) (9). Paired correlations of the independent com-
ponents were calculated by Pearson correlation and trans-
formed using Fisher z transformation, in which the upper
triangle elements of the FNC matrix (53 X 52/2 = 1378) were
extracted for further analysis.

Phenotypic Measures

We examined a total of 41 summarized environmental expo-
sures as done by Modabbernia et al. (12), consisting of 5 do-
mains (Table S2 in Supplement 1): 13 perinatal/early

Figure 1. Research design. Environment-brain-
behavior triplet correlations 1) between environ-
mental exposures and whole-brain functional
network connectivity (FNC) and 2) between envi-
ronmental exposures and multibehaviors (baseline,
1-year follow-up, 2-year follow-up). 3) Building
behavior (baseline and follow-up) prediction models
using FNCs, environmental exposures, and their
combinations, identifying the most predictive func-
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development events, 7 life events/lifestyle, 12 family charac-
teristics, 6 neighborhood variables, and 3 school environment
variables. For cognitive abilities, we used 10 scores from a
well-validated NIH Toolbox at baseline and 2-year follow-up
(24). For mental health, we used 11 metrics from the parent-
reported Child Behavior Checklist and 2 additional metrics
(prodromal symptom and subsyndromal mania) at baseline
and 1-year follow-up (25), which were selected via balancing
the sample size and information completeness (Tables S3, S5,
and S6 in Supplement 1).

Baseline and Longitudinal Association Analysis
Between Environment, Brain, and Behavior

Linear mixed-effects models were adopted to examine the
associations between 41 environmental exposures and 1378
whole-brain FNC pairs, 10 cognitive abilities, and 13 mental
health measures at baseline (Figure 1). Specifically, each FNC
edge, cognitive ability, or mental health measure was modeled
as the dependent variable; environmental exposures and the
nuisance covariates were modeled as fixed effects; and the
family structure nested within sites was modeled as a random
effect (13). The nuisance covariates included age, sex, body
mass index, puberty, ethnicity, handedness, and mean
framewise displacement (for the FNC analyses only), in which
sex, ethnicity, and handedness were coded as dummy vari-
ables. The correlation r value, t statistic, and effect size
(Cohen’s d) were estimated for each linear mixed-effects
model to reflect the association of specific environmental
exposure with the dependent variable. The same analytical
framework was employed to investigate the longitudinal as-
sociations between environmental exposures and follow-up
cognitive abilities and mental health measures separately but
additionally included the baseline outcomes as a covariate.

Baseline and Longitudinal Behavior Prediction
Using FNC and Environmental Exposures

Beyond brain-behavior correlations, to identify key predictive
FNC signatures that support individual-level prediction of be-
haviors, we built an FNC-based predictive model using partial
least squares regression for each cognitive ability and mental
health metric. Ten-fold nested cross-validation with 200
random loops was utilized to avoid circularity bias. Model
performance was assessed by averaging Pearson’s correlation
and coefficient of determination (COD) across 200 repetitions
between observed and predicted scores for all subjects
(11,26). We then evaluated the most average contributing FNC
at the edge, node, and network levels across all repetitions
(27,28). Furthermore, to examine the promotion degree of
environmental exposures on behavior prediction, we con-
structed independent prediction models using only FNC, only
environment, and FNC+environment. The most critical envi-
ronmental exposures contributing to predictions were esti-
mated and compared between cognitive abilities and mental
health.

To examine the predictability of follow-up cognitive abilities
and mental health by FNC, environment, or FNC+environment
at baseline, we implemented the above predictive procedure,
in which the baseline outcomes and confounding variables in
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the association analysis were set as covariates in the predic-
tive model (29).

Cross-Validation Using the UK Biobank Dataset

To further validate the generalizability of the FNC-based
behavior prediction, 20,852 participants were selected from
the UK Biobank for cross-dataset validation who had both
FNC and fluid intelligence after rigorous quality control
(Figures S4 and S5 in Supplement 1). The same predictive
procedure for fluid intelligence was constructed within and
across the ABCD and UK Biobank datasets.

Mediation Analysis

Standard mediation analysis in an R toolbox (30) was used to
examine whether and to what extent the predictome FNC
signatures mediated the significant environment-behavior as-
sociations. To distinguish connectivity features with positive
and negative contributions in the predictive models (31), the
predictive FNCs were separated into positive-weighted and
negative-weighted connectivity sets. A standard 3-variable
path model was implemented for every mediation analysis
(32), adjusting for the same confounding variables in the as-
sociation analysis, in which the predictor was an environmental
exposure, the outcome variable was one cognitive ability or
mental health measure, and the mediator was either positive-
weighted or negative-weighted FNC.

Multiple-Comparison Correction

We performed false discovery rate correction (g < .05) to
determine significant environment-brain associations, and the
p-value threshold was 2.3 X 1074, with a total of 1378 X 41
tests. Bonferroni correction was used to determine significant
environment-behavior associations, and the p-value threshold
was 1.0 X 1073, with a total of 41 tests for each behavior. For
prediction, we performed 10,000 permutation tests for the
prediction accuracy, and the p-value threshold was 1.0 X
10™*. Moreover, we used 95% bias-corrected Cls with 10,000
bootstrap tests in the mediation analysis, and the p-value
threshold was .05. When reporting p values, the uncorrected p
values are reported.

RESULTS

The Subcortical Network Was the Most Vulnerable
to Environmental Exposures

As shown in Figure 2A, family income (rapsoiute = 0.05-0.09) and
caregiver education (fapsowte = 0.04-0.07) were the top 2
ranked exposures influencing more FNC numbers, which
manifest similar FNC architectures, especially the cross-
module connections. Meanwhile, the thalamus (fapsowte =
0.04-0.08) stood out as the brain region with the most envi-
ronmental susceptibility, followed by the precuneus (fapsorute =
0.04-0.08) and superior temporal gyrus (fapsoute = 0.04-0.09)
(Figure 2B). Specifically, environmental exposures showed
the most influence on FNC connections in the thalamus—
temporal gyrus and thalamus-postcentral gyrus (Figure 2C).
From the perspective of the functional network module, the
subcortical network (SCN) stood out with the highest
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Figure 2. Summary of associations between whole-brain functional network connectivity (FNC) and 41 environmental exposures (false discovery rate—
corrected, p < .05). (A) Ranking of environmental factors influencing more FNC pairs, and the top 2 FNC patterns. (B) Ranking of FNC nodes associated
with more exposures, and the top 5 nodes (independent component [ICs]). (C) Mapping of the number of environmental exposures correlated with each FNC,
and within each network module, in which the top FNC nodes are illustrated. (D) Distribution of environmental exposures correlated with each FNC module.
CBN, cerebellum network; CCN, cognitive control network; DMN, default mode network; SCN, subcortical network; SMN, somatomotor network; VIS, visual

network.

vulnerability to environment, mainly in domains of family,
perinatal, and neighborhood exposures (Figure 2D).

Critical Environmental Exposures Associated With
Behavior at Baseline and Longitudinally

We next tested the environment-behavior associations to
unveil the diversity in the impact of environmental exposures
on cognitive ability and mental health both at baseline and
longitudinally. At baseline (Figure 3A), 9 environmental ex-
posures were commonly correlated with 80% or more be-
haviors, in which family income, caregiver education,
caregiver marital status, neighborhood security, and area
deprivation index significantly correlated with nearly all be-
haviors, all of which belong to the family and neighborhood
domains. In contrast, 11 environmental exposures were
linked to more mental health problems, while 2 were linked to
more cognitive abilities. Specifically, months breastfed and
delayed verbal development were uniquely associated with
cognitive abilities, while sleep problems, family conflict
parents, school environment, secondary caregiver warmth,
maternal substance use, and screen use during weekdays
uniquely linked to psychiatric problems. Detailed association
maps for the 2 most representative behavior measures—
cognition total composite and Child Behavior Checklist to-
tal problems (Figure 3B)—and other behaviors are illustrated
in Figures S6 and S7 in Supplement 1. Notably, these

Biological Psychiatry May 1, 2024; 95:828-838 www.sobp.org/journal

significant associations did not change appreciably after
controlling for the participants’ diagnosis status of mental
disorders (Tables S8 and S9 in Supplement 1).

When summarizing the findings at the environmental level,
we observed that 3 psychiatric assessments, i.e., Child
Behavior Checklist total problems, withdrawn/depressed syn-
drome, and social problems, were significantly associated with
the most environmental exposures (31 out of 41). Similarly, the
cognition total, oral reading, and crystallized composite were
linked to the most environmental factors, while pattern com-
parison and flanker inhibitory control and attention were linked
to the least number of exposures.

Most importantly, at follow-up (Figure 3C), it was remark-
able that sleep problems showed prominent associations with
all mental health problems. Five baseline environmental ex-
posures, i.e., family income, caregiver education, severe
financial difficulty, caregiver marital status, and area depriva-
tion index, were commonly correlated with more than 5 follow-
up behaviors, which primarily fell in the family and neighbor-
hood domains. In contrast, 5 exposures, particularly sleep
problems, family conflict, parental psychopathology, and
number of people living, uniquely linked to more 1-year-later
mental health problems, while 2 exposures, i.e., delayed verbal
development and months breastfed, specifically linked to more
2-year-later cognitive abilities. Interestingly, school domains
and multiple pregnancy measures linked to almost all baseline
mental problems, especially 1-year-later prodromal symptom.
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Figure 3. Environment-behavior association. The summarized correlation mapping between 5 domains of environmental exposures and 23 behaviors, both

(A) at baseline and (C) longitudinally, in which the triangle, square, and round

black dots denote the mental health-specific, cognition-specific, and shared

environmental exposures, respectively. The bar above denotes the number of environmental exposures significantly correlated with each of the 23 behavioral
items (Bonferroni corrected, p < .05). (B) Environmental exposures significantly associated with the cognition total composite and Child Behavior Checklist
(CBCL) total problems syndrome in which the top 10 most associated exposures were annotated, and the dots outside the dotted line represent significant
correlations passing the Bonferroni correction (p < .05), with Cohen’s d displayed.

Overall, prodromal symptom, subsyndromal mania, and with-
drawn/depressed syndrome were the 3 follow-up mental
problems most associated with baseline exposures, along with
picture vocabulary as a measure of cognitive ability.

The Dominating Role of Environmental Exposures
in Predicting Multiple Behaviors

The results demonstrated that all 10 cognitive abilities and 13
mental health measures can be significantly predicted by
whole-brain FNC (o < 1.0 X 107%, 10,000 permutation tests)

832

(Table S10 in Supplement 1), in which the prediction accu-
racies for most cognitive abilities were much higher than those
for mental health measures. Similar results were revealed by
the connectome-based predictive modeling (31) and random
forest (33) models (Figure S10). Specifically, cognition total
composite showed the highest predictability among all be-
haviors (r = 0.39, COD = 0.14) (Figure 4A-C). Notably, these
predictions remained significant even after controlling for
multiple covariates and data harmonization via ComBat
(Figure 4B) (34).
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Obviously, the environmental exposures themselves can significantly higher than using only FNC (p < .001, false dis-
achieve much higher prediction accuracy than using only FNCs covery rate—corrected), and such an improvement was more
for most cognitive abilities (rax = 0.47, COD = 0.22) and all remarkable in mental health (r = 0.32-0.63, Ar = 0.17-0.53)
mental health measures (f;,ax = 0.63, COD = 0.40) (Table S10 in (Figure 4E) than in cognitive ability (- = 0.12-0.47, Ar =
Supplement 1) with p < 1.0 X 1072 (10,000 permutations). We 0.00-0.08) (Figure 4F) at p < 1.0 X 10° (10,000 permutations),
note that their combination further improved the prediction ac- suggesting the prominent role of environmental exposures on
curacy of multiple behaviors (Figure 4), whose accuracies were developmental risks of adolescent mental health.
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Figure 4. The prediction results for behaviors. Prediction of cognition total composite (A) based on functional network connectivity (FNC) only and (B) after
adjusting for covariates including site, harmonization by ComBat, mean framewise displacement (FD), pubertal stage, age, sex, body mass index (BMI), and
handedness across 200 repetitions of 10-fold cross-validation. (C) The top 1% predictive connections and network modules for cognition total composite after
averaging across 2000 cross-validation rounds. (D) Cross-validation between the ABCD (Adolescent Brain Cognitive Development) and UK Biobank datasets
for prediction of fluid intelligence using FNC. Comparison of prediction accuracy using only FNC, only environment, or their combination for (E) 10 types of
cognitive abilities and (F) 13 types of mental health measures. (G) The summarized top-contributing FNC modules and environmental exposures for predicting
cognition or mental health. *p < .05, **p < .001, false discovery rate-corrected. CBN, cerebellum network; CCN, cognitive control network; COD, coefficient of
determination; DMN, default mode network; SCN, subcortical network; SMN, somatomotor network; VIS, visual network.
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Figure 4G summarizes the most contributing functional
network modules and environmental exposures for either the
10 cognitive abilities or 13 mental health measures. Results
showed that FNCs in cognitive control network—-cognitive
control network (CCN-CCN), default motor network—default
motor network (DMN-DMN), and DMN-CCN showed the
most predictive power for cognitive abilities, while FNCs in the
SCN-SCN, somatomotor network-SCN, and CCN-CCN
contributed most to mental health. This suggests that CCN-
CCN within-network connections are shared crucial pre-
dictors for both domains. In contrast, FNCs within the DMN
contributed more to cognition, while FNCs within the SCN
primarily contributed to mental health.

Furthermore, caregiver education, caregiver marital status,
delayed verbal development, family income, and school envi-
ronment were the top 5 environmental exposures for cognitive
prediction, whereas family conflict parent/youth, severe
financial difficulty, sleep problems, and maternal medical
conditions were the top 5 predictive environmental adversities
for mental health, which are highly overlapped with those most
associated exposures in Figure 3A. For each metric, the pre-
diction results, FNC signatures, and critical environmental
exposures are provided in Table S10 and Figures S11to S13in
Supplement 1, with high stability of the predictive weights
(Figure S14).

Cross-Validation Using the UK Biobank Dataset

The fluid intelligence can be significantly predicted within both
the ABCD Study (r = 0.25, COD = 0.05) and UK Biobank (r =
0.26, COD = 0.06) datasets using FNC (Figure 4D). More
importantly, when directly applying the FNC-based prediction
model trained on the ABCD Study to UK Biobank data, sig-
nificant predictions can still be achieved (r = 0.08, p < 1.0 X
10739, and vice versa (r = 0.09, p < 1.0 x 1079,

Longitudinal Behavior Prediction Using FNC and
Environmental Exposures

Results showed that four 2-year-later cognitive abilities can be
significantly predicted with r > 0.13 (p < 1.0 X 10~%) (Table 1)
using only FNC, especially picture vocabulary (r = 0.27) and
crystallized composite (r = 0.22). However, prodromal symp-
tom was the most predictable (r = 0.12, p < 1.0 X 1075 in
1-year-later mental health. Similar to baseline prediction, lon-
gitudinal prediction accuracy with only environment or
FNC+environment was much higher than only FNC, especially
for mental health. Specifically, the prediction accuracy for
picture vocabulary increased most in all cognitive abilities,
from r = 0.27 to r = 0.44, while thought syndrome increased
most in all mental health, i.e., from r = 0.05 to r = 0.45.

The top 5 most predictive independent component nodes
and environmental exposures are listed in Table 1, in which the
hippocampus, precuneus, thalamus, and caudate played a
prominent role in the longitudinal behavior prediction.
Consistent with the baseline critical exposures, we found that
family conflict and sleep problems uniquely contributed most
to mental health measures, while delayed verbal development
was specifically prominent for cognitive abilities in the longi-
tudinal prediction. Particularly, the number of people living
played a more important role in longitudinal prediction than
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cross-sectional prediction of mental health, as an increased
number of people living at baseline can decrease mental health
problems 1 year later. Moreover, family income and severe
financial difficulty were shared high-contributing predictors for
longitudinal cognition and mental health.

Mediation Analysis

Results demonstrated that positive-weighted predictive FNCs
mediated more cognitive abilities, whereas negative-weighted
predictive FNCs mediated more mental health (Figure 5).
Specifically, crystallized composite, cognition total, and pic-
ture vocabulary can be mediated by positive-weighted FNCs
from the most number of environmental exposures. A similar
condition exists for prodromal symptom and attention problem
in mental health, but by negative-weighted FNCs. In terms of
common and unique exposures linked to two types of be-
haviors, the shared influential exposures were primarily in the
domains of family and neighborhood. In contrast, sleep prob-
lems and family conflict parents specifically affected mental
health, whereas maternal age, months breastfed, and delayed
verbal development specifically affected cognitive abilities,
mainly in the domain of perinatal/early development. The sig-
nificant mediation results for all cognitive abilities and mental
health measures are provided in Tables S11 and S12 in
Supplement 2 and Figures S15 and S16 in Supplement 1.

DISCUSSION

This work revealed comprehensive environment-brain-
behavior triple interactions within a large longitudinal sample
of typically developing children. We found common critical
environmental exposures that have substantial and long-
lasting importance on cognitive ability and mental health,
which mainly fall in family and neighborhood domains, espe-
cially the family domain linked most to children’s brain function
(Figure 2D). This aligned with the concept that high socio-
economic status (family income and caregiver education) re-
flects a home environment conducive to learning and high-
quality parent-child interactions (35), while such long-term
stimulation may effectively support children’s functional brain
development (36) and may be linked to behavioral develop-
ment (37,38). Extending previous studies, we underscore the
importance of the area deprivation index, a measure of
neighborhood-level socioeconomic status (39) and neighbor-
hood security, which can be changed practically by improving
public environmental sanitation or enhancing children’s safety
education to reduce risk factors rapidly for certain mental
health.

For unique influencers, healthier perinatal exposures such
as longer months breastfed and earlier verbal development
promise better cognitive abilities in adolescents, which also
shows strong lasting links to the children’s brain connectome
in all network modules. This may be because the infant brain is
marked by rapid development of neurons and explosive
growth of cortex and thus is highly vulnerable to environmental
exposures (40), suggesting that healthy perinatal development
is an irreplaceable protective factor for evolving cognitive
function. On the other hand, more sleep problems, family
conflict, and adverse school environment were especially link
to increased risk of mental health (Figure 3), both at baseline
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Table 1. Longitudinal Prediction of Follow-Up Behaviors Using FNC and Environmental Exposures

Biological
Psychiatry

Only FNC Only Environment FNC+Environment Most Predictive Features
Variable R p R p R p Top 5 fMRI ICs Top 5 Exposures
Thought 0.05 = 0.01 <1 X 1072 0.46 = 0.01 <1 x 107% 0.45 = 0.01 <1 X 10> Caudate Family conflict parents
Syndrome Precuneus Number of people living
(CBCL) Superior frontal gyrus School environment

Total Problems
(CBCL)

Attention
Problems
(CBCL)

Rule-Breaking
Behavior
(CBCL)

Prodromal
Symptoms

Anxious/
depressed
Syndrome
(CBCL)

Picture
Vocabulary

Crystallized
Composite

Oral Reading
Recognition

Picture
Sequence
Memory

0.04 = 0.01 <.05 0.44 + 0.01 <1 x 107%

0.06 + 0.01 <1 X 107** 0.36 + 0.01 <1 X 10°*

0.05 + 0.01 <.01 0.35 = 0.01 <1 x 1073

0.12 = 0.01 <1 X 107% 0.29 = 0.01 <1 x 107

0.04 = 0.01 <.05 0.29 + 0.01 <1 x 1073

0.27 = 0.01 <1 x 107% 0.43 = 0.02 <1 x 107%

0.22 = 0.01 <1 x 107% 0.38 = 0.03 <1 x 107%

0.13 = 0.01 <1 x 107% 0.24 = 0.03 <1 x 107*

0.13 = 0.01 <1 x 107% 0.20 = 0.01 <1 x 107%

0.42 +0.01 <1 x 10°%

0.37 = 0.01 <1 x 10°%

0.35 = 0.01 <1 x 10°%

0.28 = 0.01 <1 x 107%

0.28 = 0.01 <1 x 10°%

0.44 = 0.02 <1 x 10°%

0.37 + 0.08 <1 x 107%

0.24 + 0.08 <1 x 107%

0.21 = 0.01 <1 x 10°%

Postcentral gyrus
Left postcentral gyrus

Hippocampus

Precuneus

Middle temporal gyrus
Right inferior frontal gyrus
Middle cingulate cortex

Middle temporal gyrus
Middle cingulate cortex
Middle temporal gyrus
Left postcentral gyrus
Inferior parietal lobule

Thalamus

Caudate
Hippocampus

Middle temporal gyrus
Sub/hypothalamus

Caudate

Precuneus

Superior temporal gyrus
Middle occipital gyrus
Cerebellum

Precuneus

Precentral gyrus
Supplementary motor
Right inferior frontal gyrus
Paracentral lobule

Hippocampus

Precuneus

Superior medial frontal gyrus
Superior parietal lobule
Cerebellum

Thalamus

Hippocampus

Putamen

Superior medial frontal gyrus
Inferior frontal gyrus

Thalamus

Hippocampus

Superior parietal lobule
Posterior cingulate cortex
Superior temporal gyrus
Precuneus

Superior temporal gyrus
Paracentral lobule

Middle occipital gyrus
Cerebellum

Maternal medical condition
Sleep problems

Family conflict parents
Number of people living
School environment
Maternal medical condition
Sleep problems

Family conflict parents
Number of people living
School environment
Delayed verbal development
Maternal medical condition

Family conflict parents
Family conflict youth
Severe financial difficulty
Caregiver marital status
Family income

Family conflict youth
Severe financial difficulty
Family income
Caregiver education
Caregiver marital status

Family conflict parents
Number of people living
Days of physical activity
Severe financial difficulty
Sleep problems

Delayed verbal development
Severe financial difficulty
Family income

Caregiver education
Caregiver marital status

Delayed verbal development
School environment

Family income

Caregiver education
Caregiver marital status

Delayed verbal development
School environment

Severe financial difficulty
Positive school involvement
Caregiver education

School environment
School disengagement
Severe financial difficulty
Family income
Caregiver marital status

The longitudinal prediction accuracy by only FNC, only environment, and the combination of FNC and environmental exposures are represented by mean + SD across
200 repetitions of 10-fold cross-validation, with the top 5 ICs and environmental exposures displayed.
CBCL, Child Behavior Checklist; fMRI, functional magnetic resonance imaging; FNC, functional network connectivity; IC, independent component.
2The longitudinal prediction is significant across all 200 repetitions (o < 1 X 1074

and longitudinally. Previous studies have found that sleep
problems were associated with high emergence of depressive
problems (6,13,14). Similarly, family conflict was identified to
be one of the most robust risk factors for suicidality (41), which
resonated with our results linking family conflict with the
emergence of baseline or follow-up mental health problems.

Biological Psychiatry May 1, 2024; 95:828-838 www.sobp.org/journal

More importantly, environmental exposures played a much
more dominating role than brain connectivity in predicting all
behaviors, especially in longitudinal prediction, among which
sleep problems emerged as the most prominent factor
affecting all mental health. In longitudinal prediction (Table 1),
we again found that family income was the shared key predictor;
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Figure 5. The mediating effects. We further tested whether the identified predictive functional network connectivities can mediate associations from
environment to multiple behaviors. For each of the (A) cognitive and (B) mental health measures, the radar maps show the number of environmental exposures
that can be significantly mediated by functional network connectivity (10,000 bootstrap tests at p < .05). Similarly, for each environmental exposure, radar
maps display how many (C) cognitive metrics or (D) mental health measures can be significantly mediated by functional network connectivities, in which the
top factors are highlighted in bold. (E) The common and specific environmental influencers between cognitive abilities and mental health in mediations. The

more mediation involved, the bigger the text size.

family conflict and sleep problems uniquely contributed most for
predicting 1-year-later mental health, while delayed verbal
development specifically worked for 2-year-later cognitive
ability prediction, highlighting their respectively dominating
roles in the 2 types of behavioral development (6,42). Interest-
ingly, unlike the association results, we discovered that a
greater number of people living promised fewer follow-up
mental health problems in middle childhood, suggesting that a
larger number of household members, especially older siblings,
is a protective factor for reducing risks of psychopathology due
to more family member communication and interaction (43).
Furthermore, school environment appears in the top 5 pre-
dictors in 6 out of 10 follow-up behaviors, implicating that
constructing a positive school environment could be one of the
most effective public health interventions for reducing psychi-
atric risk and improving cognitive ability in practice (44).

Intriguingly, when looking into the predominant exposures,
we found that cognitive abilities in middle childhood were
influenced most by environmental exposures that are relatively
fixed such as parents’ education, perinatal exposures, and
family income. However, lifestyle and school environmental
exposures that are flexible and changeable in childhood
influenced mental health substantially. Particularly, more sleep
problems, family conflict, and adverse school environment
increased the risk for baseline and 1-year-later mental health
problems. Note that these exposures can be modified imme-
diately by improving sleep habits, providing harmonious family
relationships, or creating a positive school environment.

In contrast, the brain connectome could mainly predict
cognitive abilities and baseline mental health but showed
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weaker links to 1-year-later mental health prediction, with the
exception of prodromal syndrome, which may be due to the
fact that mental health is measured through parental obser-
vation and consequently may be influenced by participants’
subjective feelings (25). FNCs in the DMN and CCN showed
the most predictive power for cognitive ability, especially the
important role of the DMN in longitudinal prediction (Figure 4,
Table 1). This is not surprising because the DMN and CCN
have been considered widely involved in different aspects of
cognition (8,45,46). In comparison, FNCs in the SCN contrib-
uted the most to mental health. Abnormalities in the DMN have
been consistently revealed to be implicated in adult psychiatric
disorders (47). Our results further revealed the critical role of
the SCN in mental health problems in adolescents. The SCN
has been implicated in impulsivity, attention deficits, and
emotional regulation (45,48). One interesting finding is that the
hippocampus and thalamus manifest as prominent brain
nodes in predicting 2-year-later comprehensive reading and
crystal intelligence. Specifically, the hippocampus plays a
crucial role in long-term episodic memory, which can mediate
behaviors that allow learning to take place (49), so as to
contribute most to the follow-up cognitive ability. The thal-
amus, which conveys subcortical-cortical information (50),
acts as a bridge between sensory perception and cognition
(51), which are involved in widespread deficits in behaviors.
Moreover, the predictive FNCs significantly mediate the
environment-behavior associations, implying the potential
environment-brain-behavior plasticity loops (4).

There are several limitations in this study. First, there may
exist potential collinearity among environmental exposures or
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behavior outcomes, deserving further investigation via
exploratory factor analysis in the future (52); however, this was
not the emphasis of the current study. Second, the study is
primarily based on association analysis and does not allow for
causal inferences about the environment-brain-behavior re-
lationships without further validation using randomized
controlled trials. Nevertheless, it offers a critical first step for
future studies to examine the neurobiological mechanisms
underlying behaviors. In addition, FNC matrices for adoles-
cents from the ABCD datasets were estimated using the
NeuroMark template derived from adults, which may under-
estimate the divergence of spatial network distribution con-
figurations between adolescents and adults (53-56).
Nevertheless, this concern is lessened given the generalization
of models between the ABCD and UK Biobank datasets and
the applicability of the NeuroMark template across different
age groups (57-59). Individualized atlas developed for different
age groups deserve further exploration. Furthermore, it is
worth noting that ethnicity was only considered as a covariate.
Future research can establish ethnicity-specific models to
examine the disparities of the environment-brain-behavior re-
lationships across different ethnicities.

Collectively, the present study unveiled comprehensive
environment-brain-behavior triple interactions based on the
ABCD Study both at baseline and longitudinally; identified the
CCN, DMN, and SCN as the most predictive functional net-
works for a wide repertoire of behaviors; and emphasized the
long-term importance of critical environmental exposures to
promote brain and behavioral development in children, espe-
cially the attainable targets with family conflict, sleep quality,
and school and neighborhood environments, to promote the
healthy development of adolescents.
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