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As a popular deep learning method, generative adversarial networks (GAN) have achieved outstanding per-
formance in multiple classifications and segmentation tasks. However, the application of GANs to fMRI data is
relatively rare. In this work, we proposed a functional network connectivity (FNC) based GAN for classifying
psychotic disorders from healthy controls (HCs), in which FNC matrices were calculated by correlation of time

Cla_ssmcam’“ o courses derived from non-artefactual fMRI independent components (ICs). The proposed GAN model consisted of
Major depressive disorders .
Schizophrenia one discriminator (real FNCs) and one generator (fake FNCs), each has four fully-connected layers. The generator

was trained to match the discriminator in the intermediate layers while simultaneously a new objective loss was
determined for the generator to improve the whole classification performance. In a case for classifying 269 major
depressive disorder (MDD) patients from 286 HCs, an average accuracy of 70.1% was achieved in 10-fold cross-
validation, with at least 6% higher compared to the other 6 popular classification approaches (54.5-64.2%). In
another application to discriminating 558 schizophrenia patients from 542 HCs from 7 sites, the proposed GAN
model achieved 80.7% accuracy in leave-one-site-out prediction, outperforming support vector machine (SVM)
and deep neural net (DNN) by 3%-6%. More importantly, we are able to identify the most contributing FNC
nodes and edges with the strategy of leave-one-FNC-out recursively. To the best of our knowledge, this is the first
attempt to apply the GAN model on the FNC-based classification of mental disorders. Such a framework promises
wide utility and great potential in neuroimaging biomarker identification.

1. Introduction

Mental disorders cause high socioeconomic burdens and many ex-
hibit comorbidity between each other (Kessler et al., 2012). Machine
learning methods based on neuroimaging data have been widely ap-
plied in the classification of mental disorder in order to facilitate the
diagnosis objectively e.g., support vector machine (SVM), linear dis-
criminant analysis (LDA), and nearest neighbors (NN) (Gao et al., 2018;

Jie et al., 2018; Sato et al., 2015; Zhang et al., 2015). In most cases, the
raw fMRI data needs to be extracted and processed in order to acquire
less redundant and more informative features. Recently, deep learning
has achieved remarkable performance in many research field
(Arbabshirani et al., 2017; Calhoun and Sui, 2016; LeCun et al., 2015;
Yan et al., 2019a; Yang et al., 2019) due to its ability to automatically
learns the patterns from the big data without feature selection. For
instance, (Kim et al., 2016) adopted a stacked autoencoder to initialize
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Fig. 1. Overview of the GAN model for MDD vs HC and SZ vs HC classification.

Figure 1 The GAN model was composed of a discriminator and a generator with four fully-connected layers. FNC estimated for each subject based on group-ICA was

used as the input of the GAN module.

its own weight based on pre-training to increase schizophrenia classi-
fication accuracy. (Zeng et al., 2018) investigated the discriminant
autoencoder network for multi-site classification of schizophrenia with
fMRI. (Yan et al., 2019a) proposed a multi-scale RNN model to enable
schizophrenia classification by using time courses of fMRI independent
components (ICs) directly. Basically, deep learning methods have de-
monstrated powerful discriminating ability for classifying mental dis-
orders using fMRI data.

In particular, generative adversarial networks (GAN) have drawn
increasing attention due to their capability to perform data generation
and have been widely used in the fields of image synthesis, re-
construction, segmentation, and classification (Yi et al., 2019). It has
been recently proven successful on several standard classification
benchmark tasks (Feng et al, 2019; Salimans et al, 2016;
Springenberg, 2015; Vandenhende et al., 2019) with the fact that the
generated samples promote the GAN's classification ability through
adversarial learning, especially in the case of small samples size.
However, the high-dimensional data in medical imaging is often with
only a limited sample size, which makes it challenging for the classifiers
to learn a good decision boundary. In order to improve GAN’s classi-
fication performance, feature matching has been implemented as state-
of-the-art approaches in many GAN models. Specifically, here feature
matching is setting a new objective loss for the generator which is
trained to match the feature value in the intermediate layers of the
discriminator. It can generate fake samples within the high-density
region in feature space, which can split the bounds of different classes
because of its continuity to further enhance classification performance
(Dai et al., 2017; Salimans et al., 2016).

Till now, the application of GAN on fMRI data is relatively rare.
Inspired by this, in this work, we proposed a functional network con-
nectivity (FNC)-based GAN with feature matching for classifying mental
disorders from healthy controls (HCs), in which FNC matrices were
calculated by correlation of time courses derived from non-artefactual
fMRI independent components (ICs). The reason we used FNC is that it

is able to reflect functional interactions among structurally segregated
brain regions, known as intrinsic functional connectivity networks
(ICN) (Calhoun et al., 2014) and reduce the feature dimension greatly.
Furthermore, the FNC estimated by independent component analysis
(group-ICA) also demonstrated to be more reliable and sensitive in
biomarker detection for psychosis (Du et al., 2015; Sui et al., 2018) and
can be applied to new individuals (Du et al., 2018).

To the best of our knowledge, this is the first attempt to apply GAN
on FNC features to discriminate psychiatric patients from controls. We
tried on two kinds of disorders: 1) MDD vs HC (555 subjects, 269 MDD,
286 HCs); 2) SZ vs HC (1100 subjects, 558 SZ, 542 HCs). The proposed
GAN model combines fake FNC generation and classification together
into a unified optimization framework. To increase result interpret-
ability, leave-one-FNC-out looping was adopted to identify the most
contributing FNCs.

2. Materials and methods
2.1. Generative adversarial network with feature matching

The proposed GAN model consisted of one discriminator (real FNCs)
and one generator (fake FNCs), each has four fully-connected layers.
Furthermore, feature matching, the generator was trained to match the
feature value in intermediate layers of the discriminator, was im-
plemented by specifying a new objective loss for the generator to im-
prove classification performance. FNC estimated for each subject based
on group-ICA was used as the input of the GAN module. To verify that
adversarial training (AD) and feature matching (FM) in GAN do directly
improve the learning capacity of the GAN method, the ablation ex-
periments were performed in the paper. Equations are listed in the
Supplementary files for a precise definition of the GAN model with
feature matching.
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2.1.1. Generative adversarial network

GAN may learn a better decision boundary than the traditional
methods because the generated samples promote the discriminator's
classification ability through adversarial learning, especially in the case
of a small sample size. As shown in Fig. 1, a GAN architecture was
applied for classification. The GAN model was composed of a dis-
criminator and a generator with four fully-connected layers, optimizing
its network parameters through continuous competitions. The dis-
criminator’s output layer has K+ 1 classes, where K= 2 for the real class
from data x and K+ 1 class for the generated image. It is worthy to note
that the discriminator can realize multiclass discriminative ability by a
soft-max classifier. Compared to the unsupervised GAN model, the
proposed GAN incorporated both labeled and generated data into the
loss function.

2.1.2. Feature matching

Feature matching was able to address the instability of GAN by
specifying a new objective loss for the generator, which can prevent it
from overtraining on the discriminator (Salimans et al., 2016). Instead
of directly maximizing the output of the discriminator, the new objec-
tive enabled the generator to generate data that matched the statistics
of the real data, where we only used the discriminator to specify the
statistics that were worth matching. The generator was trained to match
the feature value in intermediate layers of the discriminator. The in-
termediate layer we set in this study is the third hidden layer. Through
feature matching by the generator, discriminative features can be found
to distinguish real data from generated data by training the dis-
criminator. It can generate fake samples within the high-density region
in feature space, which can split the bounds of different classes because
of its continuity to further enhance classification performance (Dai
et al., 2017).

Activations in an intermediate layer of the discriminator were de-
noted as f(x), our new objective for the generator can be defined as
follows:

”Ex~pdmaf(x) - Ez~pz(Z)f(G(Z))”% (D

Where x represents the input data, P and p,(z) represent the dis-
tribution of the input data and the distribution of the input noise, G is
the generator, and D is the discriminator.

2.2. GAN model implementation

The GAN model was trained and evaluated by using Theano and
Scikit-learn (https://scikit-learn.org/). The GAN model consisted of one
discriminator and one generator that had four layers respectively. The
output layer of the discriminator has K + 1 classes, where K = 2 for the
input pattern from HC and patient group, and the [K + 1]y, class is for
generating images. The high-dimensional features of each subject may
lead to overfitting on the training set. In order to reduce the overfitting
susceptibility, L2 normalization (L2 = 0.1) and batch normalization
were added to the generator to improve modal generalization. In ad-
dition, weight normalization (weight normalization = 0.1) was used to
the output of each layer of the discriminator to prevent overfitting.

The Adam optimizer was adopted as minimizing the loss of the GAN
model and a standard error back-propagation algorithm was used by
training the GAN model with multiple layers. The batch size was set as
120 in the training process. In addition, to overcome overfitting, the
weights were controlled with weight norm regularization. Different
layers were attempted to the constructed architecture of the GAN model
and results revealed that using four layers could obtain the optimal
classification performance. The learning rate was set as 0.0003. In this
experiment, the training time for GAN was about one hour, while the
testing time for a new subject is less than 1 s. All trainings and ex-
periments were completed on a standard workstation (Intel(R) Xeon(R)
CPU E5-1650 v4 @ 3.60 GHz, 6 CPU cores, 12GB NVIDIA GTX TITAN).
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2.3. GAN classification framework

In this study, k-fold multi-site pooling classification and leave-one-
site-out classification were conducted. In order to verify the validity of
the proposed GAN method, five conventional methods SVM, NN,
Gaussian Process, Naive Bayes, and a deep learning method DNN were
used as a comparison in this study.

10-fold cross-validation was applied to verify the generalization
ability of the classifiers in the multi-site pooling classification. The
training dataset and the testing dataset were embedded in nested 10-
fold cross-validation cycles. As for all the models, we used nine folds as
the training set, and one fold for the testing dataset. A specific imaging
site was applied as the testing set and the sample of other sites as the
training set in the leave-one-site-out transfer classification. Accuracy
(ACQ), sensitivity (SEN), specificity (SPE), F-score (F1) and area under
curve (AUC) verify the classification performance. The formula is de-
fined as follows:

ACC = TP + TN | SPE = TN | SEN = TP
TP + TN + FP + FN TN + FP TP + FN
¥
PPV = TP Fl=2 SEN*PPV

TP + FP’ SEN + PPV

Where true positive, true negative, false positive, false negative and
positive predictive value was denoted as TP, TN, FP, FN, PPV respec-
tively. The means and standard deviations of ACC, SEN, SPE,Fland
AUC were obtained by 10-time 10-fold cross-validation and a two-
sample t-test was adopted as the comparison of the performance of
different classification models.

2.4. Estimate the contributing FNC (Leave-one-FNC-out)

The basic idea is that potential biomarkers are such that the removal
of these features leads to the most significant degradation of accuracy.
The specific implementation is as follows:

In order to calculate the most contributing FNC, we substitute the
dg, FNC with default value 0 while keeping other FNC as they were.
This is equivalent to erasing the contribution of dy, FNC. The classifi-
cation accuracy with reduced FNC may decrease compared to that using
all FNCs. Compared to that using all features, the classification accuracy
of the trained model which is fed with reduced features may decrease.
Based on the leave-one-feature-out strategy, we sorted the classification
accuracy when getting rid of each FNC. Then the FNCs which cause the
top 3% decrease of classification accuracy were recorded and con-
sidered as the most contributing features. Similarly, for the most con-
tributing FNC node, we summarized the top 30% contributing FNCs and
discovered the top 10% nodes that linking most of the FNCs (higher
degrees). Moreover, the selected features are visualized with
BrainnetViewer (https://www.nitrc.org/projects/bnv/) and
BRANT (http://brant.brainnetome.org/).

The brain regions in MDD were grouped into seven functional
subsystems for visualization based on their anatomical and functional
properties: auditory (AUD), cognitive control (CC), sensorimotor net-
work (SMN), default-mode network (DMN), frontal network (FN), vi-
sual (VIS), and cerebellum (CB).

The brain regions in SZ were grouped into eight functional sub-
systems for visualization based on their anatomical and functional
properties: sub-cortical (SC), auditory (AUD), Sensorimotor network
(SMN), visual (VIS), default-mode network (DMN), attentional network
(ATN), frontal network (FN), and cerebellum (CB). long term, we
should look at both analyzed via neuromark so we can directly compare
different mental disorders such as MDD and SZ.

3. Participants

In this study, 555 Chinese Han subjects including 269 MDD patients
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Table 1
Demographic information of the MDD/HC database.
MDD HC P-value

Number of scans 269 286 NA
Age (mean =+ std, yrs) 32.8 £ 10.6 31.7 £ 10.4 0.22
Gender (M/F) 105/164 105/181 0.18
SYMPTOM SEVERITY
HDRS 18.3 £8.3 NA NA
BDI 20.4 +6.9 NA NA

Table 1 Note: MDD: major depressive disorder; HC: healthy control; yrs: years;
BDI: beck depression rating scale; std: standard deviation, HAMD: Hamilton
depression scale; F: female; M: male; NA: not applicable.

and 286 HCs derived from 4 sites were used, including the Henan
Mental Hospital of Xinxiang (Site 1), the West China Hospital of
Sichuan (Site 2), the Anding Hospital of Beijing (Site 3), and the First
Affiliated Hospital of Zhejiang (Site 4). No significant group difference
between HC and MDD was obtained in age or gender (age: p = 0.22;
gender: p = 0.18). The DSM-IV based on SCID-P interviews was used to
diagnose patients. HCs were interviewed using SCID-I/NP, and the first-
degree relatives with any mental illness were excluded. Each site ac-
quired approval from their respective research ethics boards, and in-
formed consent was received from each subject prior to scanning by
each site’s Institutional Review Boards. Patients were excluded if they
had a history of head injury which cause significant non-psychiatric
medical illness, or unconsciousness for longer than a few seconds. These
individuals were also excluded with obsessive-compulsive disorder,
posttraumatic stress disorder or an active substance use disorder.
Table 1 provides a statistical information, please see more information
in Table S1.

For SZ data, 1100 Chinese subjects (542 HCs and 558 SZ patients)
from seven sites were used, including the Peking University sixth
Hospital (Site 1), the Huilongguan Hospital (Site 2), the Henan Mental
Hospital (Site 3), the Henan Mental Hospital (Site 4), the Xijing
Hospital (Site 5), the Renmin Hospital of Wuhan University (Site 6),
and the Zhumadian Psychiatric Hospital (Site 7). Each site received
approval from the relevant Ethics Committees and all study participants
obtained written informed consents. All the SZ patients were evaluated
based on the SCID and diagnosed by experienced psychiatrists by using
DSM-IV-TR. All the HCs which were free of Axis I or II disorders were
recruited from the same local geographical areas as the patients cohort
through local advertisement. The exclusion criteria were suitable for all
subjects included substance abuse or dependence, pregnancy, prior
electroconvulsive therapy, and current or past neurological illness.
Table 2 provides a statistical information, please see more information
in Table S2.

3.1. Data acquisition

The resting-state fMRI data for MDD patients and demographically
matched HCs were collected on a 3 T Philips scanner at Site 2 and on a 3
T Siemens scanner (Verio, Germany) at site 1, site 3 and site 4. The field
of view (FOV) was 240 X 240 mm (64 X 64 matrix) at site 2, 220 X
220 mm (64 X 64 matrix) at site 1 and site 4, 200 X 200 mm (64 X 64
matrix) at site 3 and all sites have 240 volumes of echo planar images

Table 2
Demographic information of the SZ/HC database.
HC SZ
Number of scans 542 558
Age (mean =+ std, yrs) 28.0 £ 7.2 27.6 +7.1
Gender (M/F) 276/266 292/266

Table 2 Note: SZ: schizophrenia; HC: healthy control; yrs: years; std: standard
deviation; F: female; M: male.
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obtained by the same parameters: repetition time (TR) = 2000 ms;
echo time (TE) =30 ms; flip angle (FA) = 90. Site 1 was 33 sequential
ascending axial slices of 4 mm thickness, Site 3 was 33 sequential as-
cending axial slices of 3.5 mm thickness and site 2, and site 4 were 38
sequential ascending axial slices of 4 mm thickness. During scanning,
head movement and scanner noise were minimized by foam padding
and earplugs and subjects followed the instructions to keep eyes closed
and stay awake when lying still.

The resting-state fMRI data for SZ patients and age- and gender-
matched HCs were collected on a 3.0 T Siemens Trio Tim Scanner in
Site 1, site 2 and site 5, a 3.0 T Siemens Verio Scanner at site 3, and a
3.0 T Signa HDx GE Scanner at site 4, site 6, and site 7. During scan-
ning, head movement and scanner noise were minimized by foam
padding and earplugs and subjects followed the instructions to keep
eyes closed and stay awake while lying still.

3.2. Data preprocessing and FNC measure

The SPMS8 (http://www.fil.ion.ucl.ac.uk/spm/) software is used by
the preprocessing of the resting-state fMRI data and the preprocessing
flow is as follows: The first 10 volumes were discarded to exclude T1
equilibration effects, slice timing correction, motion correction, nor-
malization in the standard Montreal Neurological Institute (MNI) space
(3 mm isotropic voxels), denoising and spatially smoothing with an 8
mm full-width half max Gaussian kernel. Each voxel time course was z-
scored to normalize variance across space. In addition, to limit the
impact of head motion, a maximum translation of > 2 mm or rotation
of > 2 mm or framewise displacements (FD) > 1 mm was excluded in
the subjects. Results indicate that mean FD for all subjects were < 0.5
mm and there was no significant group difference between HC vs SZ
patients and a significant group difference between HC vs MDD patients
on mean FD (HC: 0.14 + 0.070, MDD: 0.12 * 0.066, two-sample t-test:
p = 0.001, HC: 0137 *= 0-071, SZ:0-142 + 0-085, two-sample t-test: p
= 0.98). For MDD and HC, since the mean FD showed a significant
group difference, we further regressed out the mean FD from each
functional network connectivity to eliminate the potential group dif-
ference (Yuan et al., 2016). Moreover, we regressed age, gender in
order to eliminate the effects of these variables.

For MDD patients and HCs, the fMRI data were decomposed into
subject-specific spatial ICs and its corresponding time courses using a
spatially constrained ICA back-reconstruction approach called group
ICA implemented in the GIFT software (http://trendscenter.org/
software/gift) which is robust to artifacts (Du et al., 2016), resulting
in 29 selected ICNs from 100 group independent components. More
details of spatial maps are listed in the Supplementary Figure. S3. ICA
was applied first to decompose the 4D fMRI into useful ICNs and some
noise ICs that were thrown off, which is also a denoising step. Due to
the time courses of the selected ICNs may still contain remaining noise
sources, the additional post-processing including detrending, control-
ling covariates by regression, and bandpass filtering was applied (Allen
et al., 2012). The time courses of selected ICNs were post-processed by
detrending linear, quadratic and cubic trends, regressing out 6 rea-
lignment parameters and their temporal derivatives, despiking, and
bandpass filtering between [0.01 ~0.15] Hz using a 5th order Butter-
worth filter. FNC was computed as the pairwise correlation between
any two ICN time courses for each subject, which was further used as
input feature of the GAN model.

For SZ patients and HCs, the fMRI data were decomposed into
subject-specific spatial ICs and its time courses by performing group-
ICA within the GIFT software (Du et al., 2016), resulting in 50 selected
ICNs from 100 group independent components. More details of spatial
maps are listed in the Supplementary Figure. S4. The time courses (TCs)
of selected ICNs are post-processed by detrending, regressing out head
motion, despiking and lowpass filtering (< 0.15 Hz) and the FNC ma-
trices are calculated as the Pearson’s correlation in each pair of ICs,
which was further used as input feature of the GAN model.
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Table 3
Performance of different methods in MDD/HC classification with 10-fold cross-
validation.

Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)

Nearest Neighbors  54.5(0.9) 55.9(0.9) 53.1(0.9) 56.1(0.9) 54.5(0.9)
AdaBoost 54.6(1.7) 55.8(1.5) 53.3(1.8) 56.6(1.8) 54.5(1.7)
Naive Bayes 59.2(0.9) 62.1(1.0) 56.8(0.8) 57.3(1.0) 59.4(0.9)
Gaussian Process 60.4(0.6) 61.1(0.8) 59.6(0.5) 62.4(0.4) 60.3(0.6)
Linear SVM 62.8(0.7) 61.9(0.6) 64.2(0.9) 66.7(0.7) 62.5(0.7)
Deep Neural Net 64.2(0.9) 64.4(1.0) 64.1(1.2) 66.3(1.2) 64.1(0.9)
GAN 70.1(0.6) 73.5(4.7) 66.5(4.7) 71.7(1.5) 70.3(0.9)

Table 3 The performance of different methods in MDD/HC classification with
10-fold cross-validation. SVM, support vector machine; GAN, Generative
Adversarial Networks; ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-
score; AUC, area under curve; MDD: major depressive disorder; HC: healthy
control.

4. Results
4.1. Ten-fold and leave-one-site-out classification in MDD/HC

To demonstrate the performance of the proposed method, we
compared the proposed method with other state-of-art methods, in-
cluding five conventional methods SVM, NN, Gaussian Process, Naive
Bayes, and AdaBoost and a deep learning method DNN. The training
dataset and the testing dataset were embedded in nested 10-fold cross-
validation cycles. As for all the models, we used nine folds as the
training set, and one fold for the testing dataset. In order to test the
generalization of the model, we train the different models with the
leave-one-site-out method. The means and standard deviations of ACC,
SEN, SPE, F1 and AUC were obtained by 10-time 10-fold cross-valida-
tion and a two-sample t-test was adopted as the comparison of the
performance of different classification models.

The classification results of the GAN model compared with the other
six methods were summarized in Table 3, Table 4, and Table S3. The
accuracy of 70.1 = 0.6% and 64.3 + 2.9% was obtained by using the
GAN model in the 10-fold cross-validation and leave-one-site-out
method, which is significantly higher than those obtained by using
those traditional classification methods and DNN approach. For the
binary classification problem, the results suggested that the proposed
GAN method significantly outperformed five conventional methods
SVM, NN, Gaussian Process, Naive Bayes, and AdaBoost and a deep
learning method DNN in terms of ACC, SEN, SPE, F1, and AUC mea-
sures (P < 0.05, two-sample t-test), and achieved good generalization
results in the leave-one-site-out method (Table 3, Table 4, Table S3,
Fig. 2A and B) on account of our GAN model makes full use of adver-
sarial learning and feature matching that alleviate the small size pro-
blem of FNC images and mitigate the instability of GAN. The t-dis-
tributed stochastic neighbor embedding (t-SNE) was used to visualize
the GAN classification performance. The t-SNE visualization result as

Table 4

Performance of the leave-one-site-out method in MDD/HC classification.
Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)
Nearest Neighbors  55.5(2.0) 57.3(2.5) 53.9(4.6) 55.5(4.4) 55.6(1.2)
AdaBoost 47.9(1.4) 49.3(5.2) 47.1(1.5) 42.1(1.6) 48.3(2.0)
Naive Bayes 55.1(6.8) 59.5(9.5) 52.8(6.9) 48.2(12.7) 55.6(6.3)
Gaussian Process 56.9(5.0) 59.2(4.6) 55.0(6.8) 55.8(8.9) 57.1(2.6)
Linear SVM 55.9(6.2) 59.0(2.7) 53.7(9.0) 52.4(15.8) 56.1(4.8)
Deep Neural Net 55.0(3.4) 60.8(5.0) 52.4(3.1) 44.7(2.9) 55.6(1.8)
GAN 64.3(2.9) 61.5(3.1) 70.8(6.5) 70.5(1.5) 63.8(3.4)

Table 4 The performance of the leave-one-site-out method in MDD/HC classi-
fication. SVM, support vector machine; GAN, Generative Adversarial Networks;
ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; AUC, area under
curve; MDD: major depressive disorder; HC: healthy control.
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shown in Fig. S1, indicating that the proposed GAN model shows better
separating power and can provide intuition interpretation for the in-
crease of classification performance. In addition, the result that gen-
erated samples by the GAN method in comparison with the true FNC as
shown in Fig.S2. The analysis of the comparison is listed in the Sup-
plementary files, revealing that the distribution of FNC generated by
GAN is similar to the distribution of real FNC.

4.2. The classification of ten-fold and leave-one-site-out in SZ/HC

To validate the effectiveness of the GAN model, we evaluated the
proposed GAN method on the task of SZ classification (542 HCs and 558
SZ). The proposed method was compared with six state-of-art methods
using 10-fold cross-validation and leave-one-site-out methods. Results
were summarized in Table 5, Table 6, and Table S4, the accuracy of
82.1 = 0.7% and 80.7 + 3.8% was obtained by using the GAN model in
the 10-fold cross-validation and leave-one-site-out method, demon-
strating that the classification performance of GAN was significantly
better than other methods (Table 5, Table 6, Table S4, Fig. 2C and
Fig. 2D). The proposed GAN model can be generalized to classify the
new site. In addition, the t-SNE visualization result is shown in Fig. S1.

4.3. Most contributing FNC for MDD-HC and SZ-HC - classification

The research intention of the fMRI classification is that a specific set
of features may be used to diagnose the mental disorders as stable
biomarkers and to ensure different datasets have a consistent result. In
addition, the interpretability of deep learning has always been one of
the factors limiting the application of deep learning in the medical field
instead of classification performance. Recently, some research has
evaluated the interpretability of deep learning (Kim et al., 2016; Yan
et al.,, 2019b; Zeng et al., 2018). The basic idea is that potential bio-
markers are such that the removal of these features leads to the most
significant degradation of accuracy. Here the most contributing FNC for
classification was analyzed in the multi-site pooling strategy with the
leave-one-FNC-out method. It was found that the most important FNCs
for MDD are presented in Fig S5.a and Table 7. We also evaluated the
proposed method on the classification of SZ (542 HCs and 558 SZ) using
the leave-one-FNC-out method. It was found that the most important
FNCs for MDD are presented in Fig S5.b and Table 8. Moreover, to
present the functional "network" connectivity feature, the BRANT (Xu
et al., 2018) was applied to plot these brain maps which contain the
most contributing FNCs related to a specific network and these brain
maps were presented in Fig. 3 and 4.

5. Ablation study

To verify that adversarial training (AD) and feature matching (FM)
in GAN do directly improve the learning capacity of the GAN method,
we performed the ablation experiments by removing either adversarial
training or feature matching, similar as did in (Huang et al., 2016).
Specifically, we compared the performance of GAN models with ad-
versarial training vs no adversarial training (No-AD) (Fig. 5a, b) and
feature matching vs no feature matching (No-FM) (Fig. 5c,d). We ob-
tained the means and standard deviations of ACC, SEN, SPE, F1 and
AUC by 10-time 10-fold cross-validation and a two-sample t-test was
adopted as the comparison of the classification performance. It is clear
that the GAN model with adversarial training outperformed the GAN
with No-AD in almost all evaluation criteria, with a 6% increase in
MDD. Moreover, the GAN model with FM also achieved better classi-
fication accuracy compared to the GAN with No-FM (70% vs 69% in
MDD, 82 vs. 81% in SZ).

6. Discussion

In this work, we developed a novel GAN model using resting-state
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Fig. 2. The results of multi-site pooling classification and leave-one-site-out transfer classification for MDD vs HC and SZ vs HC.
Figure 2 (a) The MDD classification results of 10-fold multi-site pooling classification. (b) The MDD classification results of leave-one-site-out transfer classification.
(c) The SZ classification results of 10-fold multi-site pooling classification. (d) The SZ classification results of leave-one-site-out transfer classification. In all cases, *

means p < 0.05 in two-sample t-tests.

Table 5
Performance of different methods in SZ/HC classification with 10-fold cross-
validation.

Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)

Nearest Neighbors ~ 64.6(0.6)  69.1(0.8) 61.6(0.6) 61.0(0.8) 64.8(0.6)
AdaBoost 72.3(1.1)  72.4(1.1) 721(1.1) 72.8(1.0) 72.2(1.1)
Naive Bayes 69.6(0.5) 67.5(0.4) 72.7(0.6) 72.1(0.5) 69.5(0.5)
Gaussian Process 64.3(0.8) 68.5(1.0) 61.4(0.7)  60.9(0.9) 64.4(0.8)
Linear SVM 77.1(0.9)  77.4(1.0) 76.8(0.9) 77.4(0.9) 77.1(0.9)
Deep Neural Net 80.3(0.5)  80.8(0.9) 79.8(0.9) 80.5(0.5) 80.3(0.5)
GAN 82.1(0.7) 78.1(1.5) 86.2(1.1) 81.6(0.8) 82.3(0.7)

Table 5 The performance of different methods in SZ/HC classification with 10-
folds cross-validation. SVM, support vector machine; No FM, No feature
matching; GAN, Generative Adversarial Networks; ACC, Accuracy; SEN, sensi-
tivity; SPE, specificity; F1, F-score; AUC, area under curve; SZ: schizophrenia;
HC: healthy control.

Table 6

Performance of the leave-one-site-out methods in SZ/HC classification.
Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)
Nearest Neighbors  64.3(5.9) 67.7(8.2) 61.8(9.8) 61.7(6.0) 64.4(5.2)
AdaBoost 70.4(5.0) 70.0(7.8) 70.8(10.0) 71.4(4.2) 70.3(5.0)
Naive Bayes 66.6(6.0) 64.4(8.8) 69.9(10.9) 69.8(5.1) 66.4(5.7)
Gaussian Process 61.8(4.0) 64.6(6.5) 59.7(8.7) 59.2(5.2) 61.9(3.1)
Linear SVM 74.9(2.9) 74.1(7.9) 75.8(8.6) 75.8(1.9) 74.9(3.1)
Deep Neural Net 77.4(2.5) 77.0(9.0) 77.8(8.3) 78.0(1.8) 77.3(2.4)
GAN 80.7(3.8) 81.8(3.7) 79.7(9.7) 80.8(3.9) 80.7(3.4)

Table 6 The performance of the leave-one-site-out method in SZ/HC classifi-
cation. SVM, support vector machine; GAN, Generative Adversarial Networks;
ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; AUC, area under
curve; SZ: schizophrenia; HC: healthy control.

fMRI to discriminate mental disorders from HCs in large, multi-site
datasets. Our model alleviates the small size problem of FNC images by
making full use of generated FNC samples. In addition, the proposed
GAN model defines adversarial objections between the generators and
discriminator, which uses adversarial learning and feature matching to
further improve the classification performance of the discriminator.
Results showed that the GAN model achieved an average 70.1% accu-
racy with 10-fold cross-validation in MDD vs HC, at least 6% higher
than five conventional methods and deep neural net (DNN)
(54.5-64.2%). To validate the effectiveness of the GAN model, we
further applied it to a large-scale multi-site schizophrenia (SZ) dataset
including 558 patients and 542 HCs from seven sites, achieving 80.7%
accuracy in leave-one-site prediction, outperforming SVM and DNN by
3-6%, demonstrating the efficacy of the GAN approach. Subsequently,
to increase result interpretability, leave-one-FNC-out looping was
adopted, and results suggested the most contributing FNCs were pri-
marily located in the FN, DMN, CB, SMN, and CC for MDD and in the
DMN, SC, VIS, and SMN for SZ. Thus, such a framework promises wide
utility and may have great potential in neuroimaging biomarker iden-
tification. In this study the good classification performance may be
attributed to the following aspects:

This is the first attempt to apply GAN on FNC-based classification,
results from ablation experiments suggest that the generated samples in
adversarial training did promote the classification ability for FNC-based
GAN, especially in the case of a small sample size. The potential reason
might be that GAN acts as a regularizer for the decision surface of the
classifier to improve the classification performance (Vandenhende
et al., 2019). Comparing with the conventional DNN network without
the adversarial item in the cost function, we found that the accuracy of
the GAN is significantly better than the conventional DNN network with
a 6% increase for MDD and HC.
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Table 7

The most contributing FNC with the leave-one-FNC-out method for MDD vs HC.
Brain Region FNC node Brain Region FNC node
AUD inferior temporal gyrus (ITG) FN middle frontal gyrus (MFG)
AUD middle temporal gyrus (MTG) FN superior frontal gyrus (SFG)
DMN anterior cingulate (AC) CcC inferior parietal lobule (IPL)
DMN anterior cingulate (AC) CC superior temporal gyrus (STG)
SMN postcentral gyrus (PoCG) [¢e inferior parietal lobule (IPL)
DMN precuneus CB fusiform gyrus (FFG)
SMN medial frontal gyrus (MeFG) CB

declive

Table 7 The most contributing FNC and brain region with the leave-one-FNC-out method for MDD vs HC. For corresponding connections, the brain region and

FNC node are presented. AUD, auditory; CC, cognitive control; SMN, sensorimotor network; DMN, default-mode network; FN, frontal network; and CB, cere-
bellum.

Table 8

Second, feature matching (FM) in GAN could directly improve the
The most contributing FNC with the leave-one-FNC-out method for SZ vs HC.

classification performance of the GAN model. We compared the per-
Brain Region  FNC node Brain Region  FNC node formance of GAN mo.dels.w1th feature matching vs no fea.ture matching
(No-FM). As shown in Fig. 5, the GAN model showed increased per-

SMN postcentral gyrus (PoCG) DMN precuneus formance from almost all evaluation criteria. In this study, the leave-
VIS middle occipital gyrus DMN precuneus one-site-out transfer classification also gained promising accuracies

(MOG) indicating that the classification models are independent with imaging
VIS middle occipital gyrus DMN angular gyrus (AG) N i i A

(MOG) sites. Maybe due to no prior knowledge from the testing site, the leave-
SC putamen DMN precuneus one-site-out transfer classification accuracies were lower than the ac-
SMN precentral gyrus (PreCG) ~ DMN angular gyrus (AG) curacies of multi-site pooling classification to some extent. However,
AUD superior temporal gyrus VIS fusiform gyrus (FFG)

STG) the present results suggest that the GAN method proposed may provide
a potential realistic solution for individual diagnostic classification with
MDD vs HC and SZ vs HC across independent imaging sites.

As to the most contributing FNC, results showed that the most
contributing features were primarily located in FN, DMN, CB, SMN, and
CC in the classification of MDD patients involving in cognitive function

Table 8 The most contributing FNC and brain region with the leave-one-FNC-
out method for SZ vs HC. For corresponding connections, the brain region and
FNC node are presented. SMN, sensorimotor network; DMN, default-mode
network; VIS, visual; SC, sub-cortical; and AUD, auditory.
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Fig. 3. Overview of the most contributing FNC related to a specific network for MDD vs HC. AUD: auditory; CC: cognitive control; SMN: sensorimotor network; DMN:
default-mode network; FN: frontal network; VIS: visual; CB: cerebellum; ITG: inferior temporal gyrus; MFG: middle frontal gyrus; MTG: middle temporal gyrus; SFG:

superior frontal gyrus; AC: anterior cingulate; IPL: inferior parietal lobule; STG: superior temporal gyrus; PoCG: postcentral gyrus; Precun: precuneus; MeFG: medial
frontal gyrus; FFG: fusiform gyrus.
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Fig. 4. Overview of the most contributing FNC related to a specific network for SZ vs HC. SC: sub-cortical; AUD: auditory; SMN: Sensorimotor network; VIS: visual;
DMN: default-mode network; ATN: attentional network; FN: frontal network; CB: cerebellum; PoCG: postcentral gyrus; MOG: middle occipital gyrus; AG: angular

gyrus; PreCG: precentral gyrus; STG: superior temporal gyrus; FFG: fusiform gyrus.

and emotion regulation (Kaiser et al., 2015; Mulders et al., 2015). The
research (Mulders et al., 2015) is consistent with the result of the
current study that patients of the MDD observed abnormal FNCs be-
tween DMN and CC, CB, which are related to frontal, parietal, and
postcentral gyrus. The DMN and cerebellum are related to self-proces-
sing and emotional (Drevets et al., 2008; Sheline et al., 2010), and the
FN network has an important influence on cognitive ability and mood
regulation (Drevets et al., 2008; Steele and Lawrie, 2004). The im-
balance within externally-directed attention and control systems was
caused by the aberrant connectivity of the MDD between anterior cin-
gulate (AC) and inferior parietal lobule (IPL) (Kaiser et al., 2015) and
the perception and emotional facial expressions processing was related
to the aberrant FNCs in AUD and FN located in inferior temporal gyrus
(ITG), superior frontal gyrus (SFG) and middle frontal gyrus (MFG)
(Haxby et al., 2000). Abnormal reactivity caused by FNCs in precuneus
and fusiform gyrus (FFG) might accept as a depression early biomarker
as described in (Hahn et al., 2011). The SFG is related to executive
memory emotions (Fuster, 2001; Jaworska et al., 2015) and the motor,
premotor and prefrontal networks are related to executive memory.
Executive function abnormalities in MDD patients were implied by the
aberrant FNCs with SFG in FN and ITG (Fuster, 2001; Wang et al.,
2008).

Results suggested that the most contributing FNCs were primarily
located in DMN, SC, VIS, and SMN in the classification of SZ patients
involving in deficits in a multitude of cognitive domains (Sheffield and
Barch, 2016). Abnormality of the DMN has been linked to SZ in past
studies (Sui et al., 2013). The aberrant FNC is associated with angular
gyrus (AG) and precuneus in the DMN, which may cause episodic
memory deficits and auditory hallucinations in SZ patients (Mondino
et al., 2015; Vercammen et al., 2010). Recent study manifest that the
deficiency of working memory in SZ is also linked with deficient DMN

suppression (Pu et al., 2016). The delusional thought and hallucinations
may be caused by precuneus and putamen in the SC network (Braff,
1993; Cui et al., 2016). Hence, SC-related FNC alteration together with
DMN abnormality which underlies impaired attention may have an
important effect on the positive symptoms of SZ (Camchong et al.,
2009; Unschuld et al., 2013). The SMN with postcentral gyrus (PoCG)
and precentral gyrus (PreCG) has been shown to be related to higher-
order cognitive functions and it’s connectivity alterations have been
associated with cognitive and social-cognitive deficits of SZ in past
studies (Hooker et al., 2012; Kaufmann et al., 2015). The FFG is re-
garded as the critical factor for face recognition, which may possibly be
associated with impaired facial recognition in SZ.

Several limitations should be mentioned for this study. One is we
used only resting fMRI, however, classifying complex disorders may
become more reliable and precise by applying multi-modal neuroima-
ging fusion (Cetin et al., 2016; Sui et al., 2020, 2011). Second, the
generalizability of the classification framework to scanners outside our
harmonized study can not be evaluated. Third, it is difficult to assess the
medication effect due to the limited sample size and the information
inadequacy of antipsychotic or emotion stabilizing medications. Fi-
nally, data preprocessing may be vital for machine learning, and each
preprocessing step of brain imaging may have a potential effect on the
final accuracy in deep learning. Thus, it is important to evaluate the
influence of data preprocessing for deep learning in future, and the
dynamics of functional connectivity may be another option to improve
classification (Meng et al., 2017; Rashid et al., 2016; Zhi et al., 2018)

In summary, to the best of our knowledge, this is the first attempt to
apply GAN on FNC-based classification, which integrates both adver-
sarial training and feature matching. Application on discriminations of
MDD-HC and SZ-HC verified the effectiveness of the proposed method.
Compared with five traditional classification methods and a DNN
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Fig. 5. Effect of adversarial training and feature matching.
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Figure 5 (a) The comparison of AD vs NO-AD in MDD classification. (b) The comparison of AD vs NO-AD in SZ classification. (c¢) The comparison of FM vs NO-FM in
MDD classification. (d) The comparison of FM vs NO-FM in SZ classification. FNC, Functional network connectivity; AD: adversarial training; FM: feature matching.

In all cases, * means p < 0.05 in two-sample t-tests.

approach, the GAN model achieved at least 6% higher in MDD classi-
fication and 2% higher in SZ classification, suggesting its utility as a
potentially powerful tool to aid in discriminative mental disorder de-
tection.
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