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ABSTRACT 
 
The heterogeneity of schizophrenia makes it difficult to 
discover reliable imaging biomarkers, and most existing 
fMRI-based classification methods fail to combine temporal 
coherence between brain regions and temporal dynamics of 
brain activity. Therefore, we proposed a unified Hybrid Deep 
Learning Framework that effectively integrates temporal 
Coherence and Dynamics (HDLFCD) to classify psychiatric 
disorders by combining C-RNN, DNN and SVM. An 
attention module was also introduced into the C-RNN model 
to improve classification accuracy and interpretability 
without increasing the computation complexity. An accuracy 
of 85% was achieved in a large multi-site fMRI dataset with 
542 healthy controls and 558 schizophrenia patients, in which 
striatum, dorsolateral prefrontal cortex and cerebellum were 
identified as the most group-discriminative brain regions by 
the attention module. Note that the proposed framework is an 
end-to-end general module, which not only shows high 
superiority in combining multiple sources of information, but 
also can be easily applied to integrate other multimodal data.  
 

Index Terms— Attention mechanism, Schizophrenia, 
Temporal coherence, fMRI, Temporal dynamics, ICA 
 

1. INTRODUCTION 
 
Schizophrenia (SZ) has been one of the leading mental 
disorders that cause huge global disease burden, strongly 
affecting public health and quality of life. However, to 
discover the reliable and reproducible objective biomarkers 
for SZ diagnosis is still challenging and has a long way to go. 
Functional magnetic resonance imaging (fMRI), a non-
invasive imaging technique, has attracted growing attention 
as a promising tool to identify functional abnormalities and 
potential biomarkers.  

                                                
* Correspondence goes to Prof. Jing Sui kittysj@gmail.com  

Recently, deep learning (DL) methods have been widely 
applied to fMRI data for schizophrenia  diagnosis. For 
example, based on functional (network) connectivity (FNC), 
Kim et al. used deep neural network (DNN) for SZ diagnosis 
and L1-norm regularization for feature selection [1], and 
Zeng et al. proposed a deep discriminant autoencoder 
network for multi-site diagnostic classification [2]; while Yan 
et al. used the time courses (TCs) directly to discriminate SZ 
by multi-scale RNN [3]. However, these existing methods 
adopted either FNC or TCs only. FNC reflects the temporal 
coherence of neuronal populations activation of spatially 
separated brain regions, while time courses contain temporal 
dynamics of brain activity. To leverage the complementary 
information between temporal coherence and temporal 
fluctuations in fMRI data, we are motivated to combine 
functional connectivity and time courses together via a deep 
learning-based framework to improve classification 
performance.  

Moreover, interpretability is very important for medical 
classification to understand how the imaging-based diagnosis 
can make decisions. To this end, attention mechanism, 
derived from human perception, was developed to improve 
the DL model interpretability. That is, humans focus on the 
target area where is needed instead of the whole scene and 
combine information from different fixations to guide 
decision making [4]. Although several studies have used 
attention mechanism to detect discriminative region 
localization in medical classification, most of them are based 
on structural images, like sMRI and CT [5, 6]. Hence, we are 
inspired to incorporate an attention module (AM) to optimize 
feature representations and capture discriminative brain 
regions simultaneously based on fMRI data. 

Consequently, we proposed a unified Hybrid Deep 
Learning Framework that effectively integrates temporal 
Coherence and Dynamics (HDLFCD) to improve fMRI-
based classification performance. As shown in Figure 1, 
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independent components (ICs) and their corresponding time 
courses (TCs) can be obtained by decomposing fMRI data via 
group information guided independent component analysis 
(GIG-ICA), and functional network connectivity (FNCs) can 
be calculated based on the TCs. Then DNN and SVM were 
applied to learn functional dependency between brain regions 
based on FNCs respectively, while the Convolutional 
Recurrent Neural Network with attention module (C-RNNAM) 
was applied to capture temporal dynamics from TCs. Then 
prediction output from 3 schemes were combined to build a 
new feature matrix to generate the final decision by logistic 
regression.  

 

Fig. 1. Overview of  Hybrid Deep Learning Framework that 
effectively integrates temporal Coherence and Dynamics  

       The proposed model has been applied on multi-site fMRI 
dataset including 1100 participants (542 HC and 558 SZ), and 
also compared with 5 alternative classification models 
including 3 traditional methods and 2 DL methods by 10-fold 
cross-validation for ten times. 

2. METHODS 

2.1. Data description and preprocessing 

In this study, participants (558 patients with schizophrenia 
and 542 healthy controls) were recruited from 7 sites. Detail 
demographic information was listed in Table 1. 

Table 1. Demographic information of datasets
 SZ HC P-value

Number 558 542 NA 
Age 27.6(7.1) 28.0(7.2) 0.06 

Gender(M/F) 292/266 276/266 1.96 

All resting-state fMRI data were preprocessed using the 
SPM software package (http://www.fil.ion.ucl.ac.uk/spm/). 
The processing pipeline included: 1) slice timing correction; 
2) motion correction; 3) normalization into the standard 
Montreal Neurological Institute (MNI) space, resliced to 
3×3×3 mm. The 100 stable group independent components 

(ICs) were first selected by GIG-ICA in the GIFT software 
(http://trendscenter.org/software/gift). Then, 50 ICs were 
selected as intrinsic connectivity networks that showed 
higher low-frequency spectral power and their peak 
activation fell on the grey matter with minimal overlap with 
white matter, ventricles, and edge regions. The following 
post-processing steps were performed on the TCs of selected 
50 ICs: linear, quadratic and cubic detrending, regressing out 
six realignment parameters and temporal derivatives, 
despiking, and low-pass filtering (<0.15 Hz). In addition, age 
and gender were also regressed out. Then the TCs and static 
FNC matrices were used as the inputs of the C-RNN model, 
DNN and SVM respectively.  
 
2.2. Hybrid Deep Learning Framework that effectively 
integrates temporal Coherence and Dynamics  
(HDLFCD )
 
2.2.1. Overview
As shown in Fig. 3, the HDLFCD  used different models to 
describe heterogeneous input features to exploit 
complementary information among TCs and FNC. Due to
abundant sequential temporal fluctuations in BOLD time 
series, we used the C-RNNAM to capture temporal dynamic 
dependencies. As for FNC, DNN and SVM were applied to 
learn functional interaction patterns between brain regions. 
Their class probabilities were then taken as new features to 
train a meta-learner, whose output is the final prediction. 
Since we have used complex nonlinear transformations, logic 
regression was chosen as a meta-learner to combine the three 
models with different features. Cross-validation was 
conducted for first-level learners to avoid overfitting.  
 
2.2.2. Attention module (AM) 

 
Fig. 2. Scheme of the attention module 

The attention module aims to pay more attention to important 
brain regions and suppress unnecessary ones. Given the 
previously processed TCs as , where T and C is the 
number of time points and components, respectively. Here, 
there are 170 time points and 50 components in total. First,
TCs were reshaped to a C×1×T matrix. To aggregate 
temporal information fully, we adopted average-pooling and 
max-pooling operations to learn temporal statistics[7], 
resulting in two different temporal context descriptors: 
and �and then concatenated them. A convolution layer 
was applied to produce a region attention map 
with a filter of 4×1 kernel size and same padding after 
sigmoid activation. The attention map provides the 
importance of components. The attention map was reshaped 
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into the same size as X and then multiplied to original TCs, 
which helps to guide the network to focus on more important 
information instead of the full feature. To sum up, the 
attention module can be denoted as follows: 

 
 

Where is the sigmoid function. 
 

2.2.3. Convolutional Recurrent Neural Network with 
attention module (C-RNNAM) 

 
Fig. 3. The architecture of C-RNN with attention module 

As shown in Fig. 3, the C-RNN network consists of an 
attention module, multiple 1D convolutional (Conv1D) 
layers, one contact and max pooling layer, two gated 
recurrent unit (GRU) layers and a fully connected layer. 
Conv1D layers with different scales were proposed to extract 
local information for multiple time scales of brain activity. 
The size of three convolutional filters are 32×2×50 (number 
of filters × time scales × ICs), 16×4 ×50, 16×8 ×50 with the 
same padding, respectively. The GRU layers were stacked to 
capture long-term dynamic dependencies. It is worth noting 
that the GRU layers were densely connected, which can 
provide short-cut paths during back-propagation. We 
averaged the GRU outputs to make full use of brain activity 
throughout the scan.  
 
2.3. Experimental setup 
 
Based on fMRI data from 7 sites, ten-fold cross-validation 
was conducted to evaluate classification performance. We 
first compared our methods with single feature-based 
methods and typical classifiers to verify the effectiveness of 
integrating temporal coherence and dynamics information in 
our framework. Ablation experiments on C-RNN architecture 
were further performed to evaluate the effectiveness of the 
proposed AM. All experiments were repeated ten times. 

In this study, the DNN stacks one input layer, two 
hidden layers (32 and 16 hidden notes), and one output layer. 
L2 norm regularization and dropout strategy were also 
applied to avoid overfitting. All methods were implicated in 
the Keras (https://keras.io/) and sklearn (https://scikit-
learn.org/stable/). We trained the models using the Adam 
optimizer with an initial learning rate of 0.001 and decay with 
0.01. Three metrics including accuracy (ACC), specificity 
(SPE), and sensitivity (SEN) were used to evaluate the 
performance of methods.   

 

3. RESULTS AND DISCUSSION 
 
3.1. Comparison with single feature-based methods 
 
The classification performance of our method along with 
single feature-based methods was reported in Table 2. The 
results demonstrated that: (1) Our method outperforms 
regular SVM, DNN and C-RNNAM with single temporal 
coherence or dynamic features. Specifically, HDLFCD 
achieved an improvement of 2.6%, 4.3%, and 1.4% 
respectively in ACC. This demonstrates the necessity and 
effectiveness and of integrating temporal dynamics of brain 
activity and functional dependency. (2) Compared with 
SVM+DNN method only using single FNC, SVM+C-
RNNAM and DNN+C-RNNAM using both FNC and TCs 
achieved higher classification performance, showing the 
superiority in leveraging the complementary information 
between FNC and TCs. (3) The proposed method was 
superior to three popular classical classifiers, i.e., Random 
Forest, AdaBoost and SVM. (4) We achieved 85% accuracy 
in distinguishing SZ from HCs. The competitive result is 
comparable to, if not better than, the recent studies on large 
multi-site functional MRI datasets [1-3, 8].  
 
Table 2. Performance Comparison in multi-site pooling 
classification 

Methods Feature ACC SPE SEN 
RF FNC   77.1(0.3)**   74.0(0.6)**   80.1(0.5)** 

AdaBoost FNC   75.7(0.1)**   75.4(0.1)**   76.1(0.1)** 
SVM FNC   82.2(0.3)**   80.5(0.6)**   83.9(0.5)** 
DNN FNC   80.5(0.3)**   79.6(1.2)**   81.3(0.7)** 

C-RNNAM TCs   83.4(0.6)**   81.5(0.9)**   85.3(1.0)** 
S+D FNC   82.8(0.2)**   80.6(0.4)**   84.8(0.3)** 
S+C FNC+TCs  84.5(0.2)* 82.0(0.7) 86.8(0.4) 
D+C FNC+TCs 84.7(0.6) 82.4(1.1) 86.9(0.6) 

HDLFCD FNC+TCs 84.9(0.2) 82.7(0.8) 87.0(0.7) 
S+D: SVM+DNN; S+C: SVM+C-RNNAM; D+C: DNN+C-
RNNAM; */** shows the methods are significantly worse than 
the proposed methods with P value=0.05/0.01. 
 
3.2. Comparison of methods with/without attention 
 
To evaluate the effectiveness of the proposed attention 
module, C-RNN without AM and C-RNNAM was respectively 
performed for SZ diagnosis. The parameter reflects model 
complexity. As shown in Table 2, the C-RNNAM was 
generally superior to the C-RNN in all metrics with an 
improvement about 1%. Experimental results proved that C-
RNNAM not only identified the discriminative functional 
networks but also improved the classification performance. 
The average-pooling reserved global temporal statistics and 
max-pooling focused on the most salient part, which were 
both useful to detect significant components. Besides, only 
eight parameters were added in C-RNNAM, which means the 
computational complexity was not increased nearly.  

( ) ( ([ ( ); ( )]))M X conv AvgPool X MaxPool Xσ=
max( ( ; ))avgconv F Fσ=

σ
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Table 3. Performance comparison of methods with/without 
attention based on C-RNN framework.  

Methods Parameter ACC SPE SEN 
C-RNN 35682 82.6(0.4)* 81.0(0.9) 84.2(0.8)* 

C-RNNAM 35690 83.4(0.6) 81.5(0.9) 85.3(1.0) 
*/** shows the methods are significantly worse than the 
proposed methods with P value=0.05/0.01. 
 
3.3. Attention map for biomarker exploration 
 
The AM was introduced to focus on SZ-associated 
components and suppress useless ones, resulting in an 
attention map. The greater the weight of the attention map, 
the more important the component was. The spatial maps of 
top four components were shown in Figure 4.  

 
Fig. 4. Spatial map of top 4 selected HC-SZ discriminative 

components  

The results showed that the brain regions identified by 
AM were mainly concentrated in the striatum, cerebellum 
and dorsolateral prefrontal cortex (DLPFC). The dorsal 
striatum, has been proved to play a vital role in the 
pathophysiology of schizophrenia. The dopaminergic 
hyperfunction in the striatum contributes to cognitive deficits 
in SZ, and the popular antipsychotics usually blocks the 
dopamine D2 receptors in the striatum to achieve a good 
treatment response [9]. The other two highlighted 
components were located in the cerebellum. Many studies 
showed significant evidence for cerebellar abnormalities in 
SZ during cognition tasks [10]. The DLPFC has been shown 
to be important for working memory (WM), a key part of 
cognition. Numerous neuroimaging studies have reported 
aberrant DLPFC activation during WM performance.  

Overall, the most discriminative brain regions were 
consistent with and extended previous studies, implying that 
the proposed AM can effectively extract useful information 
and ignore irrelevant components.  

 
4. CONCLUSION 

 
In this study, we proposed a framework that characterizes 
temporal coherence between brain regions and temporal 
dynamics of brain activity jointly to distinguish SZ from HCs. 
Experimental results showed the superiority of combining 
multiple features. To the best of our knowledge, this is the 
first attempt to introduce an attention mechanism in a C-RNN 
based framework to identify discriminative imaging 
biomarkers and improve the classification performance by 

learning which regions to emphasize or suppress, without any 
increase in model complexity. It should be noted that the AM 
was an end-to-end module and trainable along with other 
modules, which can be integrated into other architectures. 
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