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ABSTRACT

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can
be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs)
and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal
dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks.
Both features have been used as input to deep learning approaches with decent results. However, few
studies have tried to leverage their complementary information to learn optimal representations at mul-
tiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Con-
nectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN)
and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultane-
ously. Specifically, C-RNN”M was proposed to extract temporal dynamic dependencies with an attention
module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to
identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then,
both prediction outputs were concatenated to build a new feature matrix, generating the final decision
by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n
~ 1100) and public autism datasets (ABIDE, n ~ 1522) by outperforming 12 alternative models at 2.8-8.9%
accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable
classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More
importantly, the most group-discriminative brain regions can be easily attributed and visualized, provid-
ing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA
model in the identification of valid neuroimaging biomarkers.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

(TCs) and functional network connectivity (FNC) (Calhoun and
Adali, 2006; Jafri et al., 2008; Smith et al., 2009) can be easily ex-

Functional magnetic resonance imaging (fMRI) has been a
promising tool to provide novel insights into the brain function
abnormalities of psychotic disorders (Andreou, 2020). Based on
multivariate decomposition such as independent component anal-
ysis (ICA) (Du and Fan, 2013), useful imaging features such as
independent components (ICs), their corresponding time courses
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tracted and widely used in studies of mental disorders (Fig. 1A).
Specifically, TCs reflect the temporal fluctuations of each IC, i.e.,
the spatially distinct brain regions, while FNC characterizes the
temporal coherence across the selected ICs by correlating their
TCs, representing the intrinsic connectivity networks (Calhoun and
Adali, 2012; Seeley et al., 2007; Supekar et al., 2009). Both fea-
tures have been widely used in brain disorder comparison and
classification.

On the other hand, with the ability to characterize discrim-
inative patterns and learn optimal representations automatically
from neuroimaging data, deep learning (DL) methods have re-
ceived growing attention in fMRI-based diagnosis of mental disor-
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B. Overview of the proposed HDLFCA
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Fig. 1. The framework of the proposed HDLFCA in psychotic disorder classification. (A) Data preprocessing and Feature extraction. TCs was obtained by decomposing fMRI
data using GIG-ICA, and FNCs was estimated from the TCs. (B) Overview of our proposed HDLFCA. C-RNN”M and DNN were used to characterize temporal dynamics in TCs
and learn functional dependency between brain regions respectively. Then their predictions were concatenated to build a new feature matrix, generating the final decision
by logistic regression. For model interpretability, attention module and layer-wise relevance propagation (LRP) were applied to identify the most discriminative ICs and FNC
patterns respectively. (C) Details of the C-RNNAM, It consists of an attention module, multiple 1D convolutional (Conv1D) layers, one concatenation and max pooling layer,
two gated recurrent unit (GRU) layers and a fully connected layer. The purple frame shows the scheme of the attention module, which is trainable along with other modules.
The greater the weight of the attention map, the more important the component was. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

ders. One of the most commonly used DL input features is func-
tional (network) connectivity calculated based on either a brain
atlas or ICA (Du et al, 2018). For example, Kim et al. trained a
deep neural network (DNN) based on FNC, with L1-norm to mon-
itor weight sparsity, achieved substantial performance improve-
ment (Kim et al., 2016). Zeng et al. presented a sparse autoencoder
to learn imaging site-shared FCs, which was then used to guide
SVM training on multi-site datasets for schizophrenia (SZ) diag-

nosis (Zeng et al., 2018). Similarly, in order to exploit the wealth
of temporal dynamic information in BOLD signals, recurrent neu-
ral networks (RNN)-based approaches have also been proposed to
work on fMRI time series. Particularly, Yan et al. proposed multi-
scale RNN on the TCs (Yan et al., 2017) and Dakka et al. adopted
a recurrent convolutional neural network (R-CNN) on 4-D fMRI
recordings at the whole-brain voxel level (Dakka et al., 2017) to
distinguish patients with SZ from healthy controls (HCs). Moreover,
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dynamic FNC (dFNC) has also been adopted with or without com-
bining with static FNCs to discriminate brain disorders, which can
further improve prediction accuracy (Cetin et al.,, 2016; Du et al.,
2017; Rashid et al., 2016).

However, despite the significant advances in fMRI-based classi-
fication, the complementary information between spatial-temporal
coherence (FNC) and temporal dynamics of brain activity (TCs)
have not been fully leveraged to take advantage of fMRI data.
To our knowledge, there are no deep models yet combining both
functional connectivity and activity as input features. To address
this issue, we are motivated to propose a Hybrid Deep Learning
framework integrating brain Connectivity and Activity (HDLFCA)
together by combining DNN and C-RNN (convolutional recurrent
neural network), aiming to enhance the classification performance
for brain disorders by capitalizing on multi-domain neuroimaging
information. The prediction outputs of the two neural networks
were then concatenated to build a new feature matrix, generating
the final decision by logistic regression (Fig. 1B).

Another point that needs to mention is the lack of interpretabil-
ity of DL methods, which often limited their use in clinical con-
texts due to the ‘black-box’ nature of deep layers (Kohoutova et al.,
2020). To this end, the attention mechanism, inspired by human
perception, was developed to improve the interpretability of DL
models, and has been employed in various medical imaging data
mining cases. For instance, Lian et al. developed an attention-
guided DL framework for dementia diagnosis (Lian et al., 2020),
including a full CNN to localize the discriminative regions and a
hybrid network to fuse multi-level spatial information. Similarly,
Jin et al. proposed an attention-based 3D CNN for Alzheimer’s dis-
ease diagnosis (Jin et al., 2020). However, most existing attention-
guided DL studies focused on structural images such as structural
MRI (sMRI) and Computed Tomography (CT) (Chen et al., 2020;
Dong et al., 2019; Lei et al., 2020), less attention has been paid
to fMRI data due to its higher dimensionality. In this work, we
propose two schemes to improve the interpretability: 1) to de-
velop an attention-guided C-RNN for TCs, i.e., C-RNNAM, which en-
ables learning of temporal dynamics and identification of the most
discriminative TC nodes (ICs) integrated into a unified framework
(Fig. 1C). 2) In parallel, layer-wise relevance propagation (LRP) was
applied to DNN layers, searching for the most discriminative FNC
patterns. Taken together, the most contributing fMRI features for
group discrimination were identified and visualized, improving the
whole model interpretability.

To validate the effectiveness of our proposed method, HDLFCA,
rigorous comparisons have been made with 12 popular meth-
ods. Specifically, we compared with 8 alternative models based on
static FNC or TCs and 4 DL methods using dynamic FNC, which
also characterized functional connectivity and dynamics of BOLD
signals simultaneously. These tests were performed using In-House
multi-site dataset (558 SZ and 541 HCs) and public ABIDE datasets
(743 ASD and 779 HCs). Experimental results showed our method
outperformed 12 alternative models by 2.8-8.9%, achieving SZ-HC
classification accuracy at 85.1% and 81.0% for the multi-site pooling
and leave-one-site-out respectively, and 72.4% for ABIDE dataset
with multi-site pooling. More importantly, the most group discrim-
inative brain regions can be easily traced back with convincing bi-
ological interpretability, suggesting the great promise of HDLFCA to
identify potential imaging biomarkers.

2. Materials and methods
2.1.Participants
For In-House dataset, participants (558 schizophrenia patients

and 542 HCs) were recruited from 7 hospitals, including Peking
University Sixth Hospital (PKU6), Beijing Huilongguan Hospital
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Table 1

Demographic information of datasets.
Mean+SD Sz HC P-value
Number 558 542 NA
Age 27.6+7.1 28.0+£7.2 0.06
Gender(M/F) 292/266 276/266 1.96
PANSS positive 23.9+4.2 NA NA
PANSS negative 20.1+£5.9 NA NA
PANSS general 39.7+7.2 NA NA
PANSS total 83.6+12.3 NA NA

Notes: P-value: the significance value of two sample t-test. NA: not applicable.

(HLG), Xinxiang Hospital Simens (XX#1), Xinxiang Hospital GE
(XX#2), Xijing Hospital (X]), Renmin Hospital of Wuhan University
(RWU) and Zhumadian Psychiatric Hospital (ZMD). Demographic
and clinical information of subjects were listed in Table 1 and Table
S1. All patients with SZ are diagnosed by experienced psychiatrists
using the Structured Clinical Interview for DSM-IV-TR Disorders.
All HCs are interviewed using the SCID-Non-Patient Version and
excluded if their first-degree relatives had any psychotic disorders.
Besides, none of the participants had neurological disorders, sub-
stance abuse or dependence, pregnancy, and prior electroconvul-
sive therapy or head injury resulting in loss of consciousness. The
severity of positive and negative symptoms was assessed accord-
ing to PANSS scores. Two sample t-test and Chi-square test were
performed to measure the difference of age and gender between
HCs and patients respectively. This study has been approved by
the ethical committees and all subjects provided written informed
consent, including permission to share data between centers.

For public ABIDE dataset (743 patients with ASD and 779 HCs),
the detailed demographic information of datasets was listed in Ta-
ble S14.

2.2. Image acquisition

For all sites in In-House datasets, scanning parameters are as
follows: repetition time (TR) = 2000 ms; echo time (TE) = 30
ms; flip angle (FA) = 90°; field of view (FOV) = 220 x 220mm;
matrix = 64 x 64; slice thickness = 4 mm; gap = 0.6 mm;
slices = 33. The resting-state fMRI data were collected on a 3T Tim
Trio scanner (Siemens) in PKU6, HLG and X] sites, Verio scanner
(Siemens) in XX#1 site, 3T Signa HDx GE scanner (General Elec-
tric) in the other sites. Subjects were instructed to lie still, keep
their eyes closed, stay awake, and minimize head movement with
foam padding and earplugs. Details of all sites were listed in Table
S2.

2.3. Data preprocessing

All resting-state fMRI data were preprocessed with the same
procedures as we did in Liu et al. (2019) using the SPM software
package (http://www.fil.ion.ucl.ac.uk/spm/). The first ten volumes
of each scan time series were discarded for magnetization equi-
librium. The following processing pipeline was then performed: 1)
slice timing correction to the middle slice; 2) motion correction to
the first image; 3) normalization into the standard Montreal Neu-
rological Institute (MNI) space, and resliced to 3x3x3 mm; 4) de-
noising and spatially smoothing using an 8 mm full width half max
(FWHM) Gaussian kernel.

To control the effects of motion artifacts, each subject has been
evaluated with a maximum displacement that did not exceed +
3 mm (translation) or + 3° (rotation). The group difference in the
mean framewise displacement (FD) between HC and SZ groups was
not significant (HC: 0.137 £ 0.071, SZ: 0.142 + 0.085, two-sample
t-test: p = 0.98).
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2.4. Feature extraction

Imaging data were decomposed into spatial functional networks
and back-reconstructed using Group-guided independent compo-
nent analysis (GIG-ICA) (Calhoun et al., 2001; Du et al., 2016;
Du and Fan, 2013; Du et al, 2020) in the GIFT software (http:
[/trendscenter.org/software/gift). We chose a high model order ICA
(number of components = 100) to decompose the functional net-
works showing temporally coherent activity as our previous work
(Luo et al., 2020; Zhi et al., 2018). For subject-level data, 150 prin-
cipal components were retained by principal component analy-
sis (PCA). For group-level data, acquired by concatenating subject
data across time, 100 principal components were retained using
PCA again. Afterward, the Infomax ICA algorithm was repeated 20
times using ICASSO followed by selection of the most represen-
tative result, to improve the reliability of the decomposition, re-
sulting in 100 stable group ICs (Du et al., 2014; Yan et al., 2021).
50 ICs were further selected and characterized as intrinsic con-
nectivity networks, which showed higher low-frequency spectral
power and presented minimal overlap with white matter, ventri-
cles, and edge regions (Allen et al., 2011). The 50 spatial maps are
sorted into eight domains as listed in Fig. S1. Furthermore, subject-
specific time courses and spatial maps were back-reconstructed us-
ing GIG-ICA (Du et al., 2016; Du and Fan, 2013). The following addi-
tional post-processing steps were performed on the selected com-
ponent TCs: linear, quadratic and cubic detrending, regressing out
six realignment parameters and their temporal derivatives, despik-
ing, and low-pass filtering (<0.15 Hz).

As shown in Fig. 1, the subject-level TCs with a size of 50x170
(ICs x time points) are used as the input of the RNN-based model.
Pearson’s correlation between TCs of each pair of ICs was calcu-
lated, yielding a symmetric connectivity matrix of 50x50. The FNC
matrix was further reshaped into a vector with a dimension of
(50 x 49)/2 = 1225 using the upper triangle elements, which were
used as input features of DNN.

2.5. Methods

2.5.1. Hybrid deep learning framework integrating brain connectivity
and activity (HDLFCA)

As shown in Fig. 1B, we proposed a Hybrid Deep Learning
Framework integrating brain Connectivity and Activity (HDLFCA) to
enhance the performance for brain disorder classification by taking
advantage of both temporal coherence and dynamic neuroimaging
information. In the first stage, different DL models were designed
to characterize heterogeneous features and leverage complemen-
tary information between TCs and FNC. Specifically, we used the
C-RNNAM o capture time-varying fluctuations in fMRI time se-
ries, with the attention module integrated to automatically extract
the most discriminative TCs. Meanwhile, we used DNN to learn
functional interaction between ICs, where LRP was performed to
identify the most group-discriminative FNC patterns. In the second
stage, the outputs from the above two models were concatenated
to create a new feature matrix to train a logic regression, whose
output is the final decision. 10-fold cross-validation was conducted
to evaluate the performance of models. The implementation details
were depicted in section 2.6.

2.5.2. Convolutional recurrent neural network with attention module
(C-RNNAM)

1) Overview: As shown in Fig. 1C, the C-RNNAM network consists
of an attention module, three 1D convolutional layers with differ-
ent kernel sizes, one concatenation layer, one max pooling layer,
two gated recurrent unit (GRU) layers, and a fully connected layer.
The processed TCs were fed to the C-RNNAM network to gener-
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ate the intermediate predictionP; € R¥N*1, where N is the number
of training samples.

Although RNN has great power in sequence modeling, it is still
challenging for it to deal with high dimension spatiotemporal fMRI
data with lots of redundant information. To solve this problem, we
first used Conv1D layers as an ‘encoder’ to learn correlations be-
tween brain regions, followed by max-pooling layer. The ConviD
layers extract local information from neighboring time points in
the space dimension and the pooling layer downsample data in
the time dimension (Roy et al, 2019; Yan et al., 2019). Consid-
ering the brain dynamics at different timescales can capture dis-
tinct aspects of human behavior (Liegeois et al., 2019), we ex-
panded simple convolution layers by applying multiple ConviD
layers with different kernel sizes so that the next stage would ag-
gregate dynamic brain activity from multiple time scales simulta-
neously. Since the filter lengths vary exponentially rather than lin-
early (Szegedy et al., 2015), we set the size of three convolutional
filters as 32x2x50 (number of filters x time scales x ICs), 16x4
x50 and 16x8 x50, resulting in three feature maps with a size of
170x32 (time scalesx ICsxnumber of filters), 1770x16 and 170x16
respectively. A concatenation layer was followed to integrate fea-
tures with different time scales. Furthermore, a max-pooling layer
was performed to downsample along the time axis with 3x1 ker-
nel size, resulting in 56x64 features (time points xfeature dimen-
sion) as the input of GRU layers.

Considering the brain activity is characterized by long-range
temporal dependence such that signal fluctuations at the present
time influence signal dynamics up to several minutes in the future
(Dhamala et al.,, 2020; Guclu and van Gerven, 2017), while con-
ventional RNNs often fail to learn long-term dependencies due to
the gradient exploding and vanishing problems during the back-
propagation (Bengio et al.,, 1994). Therefore, we proposed to uti-
lize GRU layers to learn useful representations of brain activity pat-
terns, which can mitigate the gradients problem by controlling in-
formation flow with gating mechanisms (Roy et al., 2019). In this
study, two GRU layers were stacked in the HDLFCA to capture both
short- and long-term dependencies in BOLD time series. It is worth
noting that each GRU layer was densely connected to the other
GRU layers to mitigate the degradation problem, which provided
short-cut paths during back-propagation (Huang et al., 2017). The
size of hidden states units was set as 32. To make full use of brain
activity throughout the scan, the GRU outputs were further aver-
aged, and two fully-connected layers were followed to give the in-
termediate prediction, which was then concatenated for the final
decision.

2) Attention Module: The attention module was proposed to in-
crease representation power and improve interpretability by focus-
ing on important brain regions and suppress unnecessary ones. The
schematic of attention module is illustrated in Fig. 1C. Given the
previously processed TCs X e R179%30 35 input, where 170 and 50
are the number of time points and ICs, the attention module gen-
erated an attention map M(X) e R>*1x1_ The attention process can
be defined as follows:

X' =BMX)) @ X

where ® denotes element-wise multiplication and B(-) denotes
broadcast operations : the attention values M(X) was copied along
time dimension accordingly and then reshaped into the same size
with X’ is the refined feature.

To construct the attention module, TCs inputs were reshaped
into a matrix of size 50x1x170. The average-pooling calculates the
mean value of all elements in the pooling region, and may re-
duce the contrast of the new feature map, while max-pooling only
uses the maximum element and ignores the others, which may
be useful for classification tasks (Yu et al., 2014). Therefore, we
adopted both of these along the time axis to learn temporal statis-
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tics and aggregate temporal information fully (Woo et al., 2018).
After that, two temporal context descriptors: F™¥Xand F2'¢ , which
denote max-pooled features and average-pooled features respec-
tively, were generated and were concatenated to produce an effi-
cient feature descriptor. We applied a convolution layer and sig-
moid activation to produce an attention map. Note that the size
of filter is 50x1, which has the same dimension as the number of
ICs rather than a smaller size to extract global relations among ICs.
And the number of filters is 50, each of them was responsible for
learning the importance of one IC. Integrated in the unified frame-
work, the attention map tells ‘which region’ is an informative part,
namely, the greater the weight of the attention map, the higher the
discrimination power of the brain region. To sum up, the attention
module can be denoted as follows:

M(X) = o (conv([AvgPool(X); MaxPool(X)]))
= o (conv(Fe; Fma))

where o is the sigmoid function.

2.5.3. Deep neural network (DNN)

Given the FNC as input, the deep neural network was applied
to learn high-level hierarchical feature representation and give the
intermediate prediction P, € RN*1. DNN was composed of one in-
put layer, two hidden layers, and one output layer. The size of hid-
den notes was set 32 and 16 respectively. L, norm regularization
and dropout strategies were used to avoid overfitting as reported
in (Srivastava et al., 2014).

Based on the trained models, LRP was introduced to identify
important FNC patterns for classification decisions, and it decom-
posed the prediction of DNN over a test sample down to rele-
vance scores for the single input dimensions such as each FNC
here. Supposing there arelayers in total, the relevance of output
neuron can be obtained in a feed-forward fashion: R{™ = f(x).
B —rule was performed to compute the propagation of relevance
from layer [ + 1 to layer [

Li+1 z; Zij \ p(i+1
R = ((1 +B) 5t —ﬁi)R} )

J Zj

— Wizt — + L ht g — -1 b
Z;; = Xiwij, ] _Zizij+bj,zj _Ziz,.j+bj

where z;; andzi} denotes positive and negative activations respec-
tively. b;.’ and bJT denote the positive and negative part of the bias

item b j.R;.M) and Rﬁ’_’f“denotes the relevance of a neuronjat layer
I+ 1, and message between neurons i at the layer | and neurons
iat layer I + 1 respectively. 8 controls how much inhibition is in-
corporated into the relevance redistribution. Then the relevance of
a neuron i at layer [ was defined by summing messages from neu-
rons at layerl + 1:

o _ (LI1+1)
je(l+1)

Therefore, the relevance scoreR;" of each FNC was determined
by this rule. For more details on LRP, please refer to (Bach et al.,
2015).

2.6. Implementation details

The HDLFCA was implemented via nested cross-validation us-
ing the Keras package (https://keras.io/). In each one of the 10 fold
experiment, the 3-fold cross-validation was performed further to
avoid overfitting. Specifically, training data was divided into three
folds further in the training stage, where two folds were used for
training and validation, and the remaining one was used for pre-
diction. After 3-fold cross-validation, predictions from three DNN
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models were concatenated to constitute intermediate prediction P1
and so does C-RNNAM to generate P2, which were used for the final
decision. In the testing stage, the outputs of three DNN models and
three C-RNN models were first averaged respectively, then two pre-
dictions were concatenated to build the final decision by logistic
regression. The procedures of the training and testing phase were
illustrated in Fig. S4. An implementation for HDLFCA is available at
https://github.com/minzhaoCASIA/HDLFCA.

The C-RNN model was trained by the Adam optimizer with
an initial learning rate of 0.001 and decayed with the rate of
0.01. Dropout (0.5) and L;,-norm regularization (L1 = 0.0001,
L2 = 0.0001) were performed to control weight sparsity. The batch
size was set at 64. The DNN model was trained with the cross-
entropy loss by the Adam optimizer with an initial learning rate
of 0.001. The performance of methods was evaluated by five met-
rics including accuracy (ACC), specificity (SPE), sensitivity (SEN),
F1-score (F1) and area under the receiver operating characteris-
tic curve (AUC). The performance of different algorithms was com-
pared via a two-sample t-test.

3. Results
3.1. Multi-site pooling classification

Ten-fold multi-site pooling experiments were conducted to
evaluate classification performance, where fMRI data from all sites
were pooled together and ten-fold cross-validation was performed.
All experiments were repeated 10 times to generate mean and
standard deviations of metrics. We compare HDLFCA with eight
competing methods on both In-House and ABIDE datasets. The
quantitative results in the task of classification are reported in
Table 2, Table 3 and Fig. 2.

As shown in Fig. 2, first, the HDLFCA reported a mean classifica-
tion accuracy of 85.3% and 72.4% on In-House and ABIDE datasets,
indicating a significant improvement over the other classical clas-
sifiers (p<0.01). For instance, HDLFCA achieved an improvement
of 8.9%, 8.3% and 3.8% in ACC compared with Random Forest, Ad-
aBoost and SVM, respectively on In-House datasets. This implied
the significant effectiveness of learning high-level, “deep” features
from fMRI data. Second, compared with BrainNetCNN, DNN, C-
RNN and C-RNNAM that adopted features of either FNC or TC
only, the proposed HDLFCA that exploits complementary informa-
tion between them led to a better diagnostic performance on two
datasets. For example, in terms of ACC, an improvement of 5.2%,
4.4%, 2.8% and 1.8% was achieved on HC-SZ datasets respectively,
and an improvement of 3.9%, 2.0%, 3.3% and 3.0% was achieved
for ABIDE datasets, suggesting the necessity and validity of inte-
grating functional dependency between brain regions and tempo-
ral dynamics of brain activity. Third, the comparative performance
of C-RNNAM and C-RNN in SZ classification showed that C-RNNAM
achieved an improvement of about 1% in terms of ACC, SPE, SEN
and F1 values, demonstrating that incorporation of discriminative
IC localization and disease classification into a unified framework
boosts the final performance. It should be noted that although the
attention module identified the discriminative ICs as well as im-
proved performance, it did not cause an increase in model com-
plexity. Forth, our HDLFCA outperformed the connectivity-based
graph convolutional network (¢cGCN) (Wang et al., 2021) signifi-
cantly on two datasets as well, which also used TCs and FCs to
extract similar connectome features.

Furthermore, to validate the generalizability of HDLFCA, we re-
produce the experiments based on TCs obtained from Automated
Anatomical Labeling (AAL) template instead of ICA, where the
mean regional TCs were calculated by averaging the voxel-wise
fMRI time series in each of brain regions of interests (ROI). Pear-
son’s correlation between TCs of each pair of ROIs was calcu-


https://keras.io/
https://github.com/minzhaoCASIA/HDLFCA

M. Zhao, W. Yan, N. Luo et al. Medical Image Analysis 78 (2022) 102413

Table 2

Performance comparison in multi-site pooling classification on In-House schizophrenia datasets.
Methods Feature ACC SPE SEN F1 AUC
RF FNC 76.4+0.8** 72.3+£1.8** 80.4+0.5** 77.6+ 0.5** 84.6+0.2**
AdaBoost FNC 77.0+0.2** 75.6+£0.2%* 78.34+0.3** 77.6+ 0.2** 81.84+0.3**
SVM FNC 81.5+0.3** 80.0-£0.8** 83.0+0.5** 82.6+0.2** 88.4:+£0.2%*
BrainNetCNN FNC 80.1+0.8** 77.2+£1.5** 82.9+1.2** 80.1+0.9** 87.7+0.5**
DNN FNC 80.9+0.4** 80.6+1.2** 81.3+0.7** 81.3+0.4** 88.84+0.3**
C-RNN TCs 82.5+0.9** 80.8:£1.1** 84.2+0.9** 83.1+0.8** 90.8:£0.4**
C-RNNAM TCs 83.5+0.5** 81.5+0.9** 85.4+0.5** 84.0+0.5** 91.44+0.3**
cGCN FNC+TCs 78.3+0.6** 77.2+£1.2** 78.6+£1.1** 78.4+0.8** 81.2+0.5**
HDLFCA FNC+TCs 85.3+0.4 83.4+0.6 87.1+0.5 85.8+0.3 92.4+0.2

Notes: RF: random forest. */** denote that the proposed HDLFCA method achieves significantly better performance than the listed
ones, with P value=0.05/0.01.

Table 3

Performance comparison in multi-site pooling classification on HC-ASD using ABIDE sites.
Methods Feature ACC SPE SEN F1 AUC
RF FNC 67.2+0.6** 63.7+0.5** 70.5+£0.8** 68.6+0.6** 72.8+£0.4**
AdaBoost FNC 64.2+0.1** 62.0+£0.1** 66.2+0.2** 65.3+0.1** 66.7+0.2%*
SVM FNC 69.5+£0.1%* 66.4+£0.2%* 72.4+0.2%* 70.7+0.2** 76.6+0.2%*
BrainNetCNN FNC 68.5+0.6** 63.44+2.1** 73.1£1.9** 70.5+0.8** 75.1+£0.6%*
DNN FNC 70.4+0.6** 68.2+1.4** 72.5+0.9%* 71.4+0.6** 76.5+0.6**
C-RNN TCs 69.1+£0.5%* 67.6+£1.2%* 70.6+0.7** 70.0+£0.4** 76.1+£0.4**
C-RNNAM TCs 69.44+0.5** 67.14+0.8** 71.5+£0.7** 70.4+£0.5** 76.0+£0.6**
cGCN FNC+TCs 67.5+0.6** 60.0+1.1** 72.2+0.7** 69.1+0.5** 72.8+£0.6%*
HDLFCA FNC+TCs 72.4+0.6 70.5+0.9 74.2+1.0 73.2+0.6 79.2+0.3

Notes: */** denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P
value=0.05/0.01.
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Fig. 2. The classification results of (A) multi-site pooling classification in in-house SZ datasets, (B) multi-site pooling classification in public ABIDE datasets, (C) multi-site
pooling classification based on TCs or FNCs extracted by AAL atlas in in-house SZ datasets, and (D) leave-one-site-out classification in HC-SZ datasets. */** denote that the
proposed HDLFCA method achieves significantly better performance than the listed ones, with P value=0.05/0.01.
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Table 4

Performance comparison in leave-one-site-out classification between HC and SZ.
Methods Feature ACC SPE SEN F1 AUC
RF FNC 71.4+4.4** 65.14+12* 79.1+8.1 73.5+4.0* 82.143.5**
AdaBoost FNC 74.842.5** 74.1£6.7** 75.7+4.7 75.14£3.3* 82.14+2.6**
SVM FNC 77.2+3.6* 76.6+9.7** 78.5+6.5 77.6+4.0 85.5+4.4%*
BrainNetCNN FNC 75.84+3.8* 77.5+£9.5%* 75.846.3 76.5+3.2 85.14+4.2**
DNN FNC 76.8+3.1* 76.2+£9.0** 77.8+5.7 77.8+3.7 85.0+4.0%*
C-RNN TCs 77.6+1.9* 77.9+£8.1** 77.1+£9.3 77.3+4.2 86.5+2.4%*
C-RNNAM TCs 78.942.1 80.0+6.5* 77.9+7.8 77.84£3.0 87.24+2.1%
cGCN FNC+TCs 75.1+£3.2* 76.5+9.0** 74.4+5.6 75.543.2* 83.14+4.1**
HDLFCA FNC+TCs 81.5+2.2 87.5+6.0 75.1+£5.8 80.3+1.7 90.2+2.4

Note: */** denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P

value=0.05/0.01.

lated, yielding a symmetric connectivity matrix of 116x116. The
results were reported in Table S5 and Fig. 2C. We can draw a sim-
ilar conclusion as above. Particularly, HDLFCA outperformed sin-
gle feature-based deep learning models (i.e., DNN, C-RNN and C-
RNNAM) largely, demonstrating the superiority of utilizing comple-
mentary information between FNC and TCs. The attention module
also yielded better classification performance (3.6% in ACC) com-
pared with C-RNN. The HDLFCA based on ICA showed a little bet-
ter performance (85.3%) than fixed AAL (84.9%), this is likely due to
the ability of ICA to capture variability in the components among
subjects.

3.2. Leave-one-site-out classification

In the leave-one-site-out transfer classification, one imaging site
was considered as the testing dataset while the other sites were
used for training, with 10% of the samples chosen randomly for
validation in the HDLFCA. The quantitative results on In-House
dataset were shown in Table 4, Table S3 and Fig. 2C. We can draw
a similar conclusion as that in Section 3.1. That is, compared with
the conventional machine learning approaches (i.e., Random For-
est, AdaBoost and SVM), the proposed HDLFCA largely improved
the diagnostic performance, suggesting that automatically learn-
ing high-level fMRI features is beneficial for SZ classification. Be-
sides, HDLFCA resulted in ACC improvement at 5.7%, 4.7%, 3.9%,
and 2.6% respectively compared to single-feature-based deep learn-
ing models (i.e., BrainNetCNN, DNN, C-RNN and C-RNNAM), This
demonstrated the superiority of integrating FNC and TCs. In addi-
tion, from the Table 4, the embedded attention module still yielded
better classification performance, which is consistent with the re-
sults reported in Section 3.1. It further indicated that it not only
identified the discriminative ICs but also improved the classifica-
tion performance. The HDLFCA still outperformed cGCN, suggesting
our method are more powerful to capture functional connectivity
and dynamic brain activity underlying the fMRI data.

3.3. Most HC-SZ discriminative ENC

The contribution of each FNC was rendered using the LRP al-
gorithm by propagating the correlation layer by layer. The top 50,
70 and 100 contributing FNC features in the task of SZ diagnosis
were presented in the circle diagram (Fig. 3A), where the 50 ICs
were divided into eight functional networks (Fig. S1). The discrim-
inative FNC showed diffuse patterns widely across the entire brain,
implying widely impaired brain regions in SZ patients. Despite the
complexity, we observed that default-mode networks with connec-
tions to frontal, and attentional networks shared a high proportion
in the top 50 contributing connectivity , which are reported to be
highly associated with SZ. In Fig. 3A, the comparison of top 50 and
top 70 contributing FNC revealed a substantial increase in connec-
tions within visual networks. Connections between frontal and de-
fault mode networks, frontal and attention networks, and connec-

tions within visual networks indicated the most contributing influ-
ence when presenting the top 100 contributing FNC , suggesting
that schizophrenia is characterized by impairments in high-level
cognitive and emotional processing circuits.

3.4. Most discriminative independent components captured by
attention module

The attention module can automatically identify discriminative
brain regions by learning which regions to focus or suppress. An
attention value map with a 50x1x1 size was obtained for each
subject and the mean attention map was generated by averaging
them, where a higher value indicates the greater discrimination
power of the IC. To obtain more robust imaging markers, we re-
peated the 10-fold cross-validation experiments 10 times (10*10
trained models in total) and counted the frequency of the top
10 discriminative ICs. Fig. 3B displays the frequency distribution
histogram, where only ICs with an occurring frequency greater
than 10% are shown. Fig. 3B also displays the spatial maps of
the top 10 discriminative ICs, in which the striatum, cerebellum
and anterior cingulate were highlighted as the three most SZ-
discriminating ICs by the attention module, suggesting that the
attention scheme can effectively extract useful information from
whole-brain fMRI features. It should be noted that Fig. 3B presents
the group-discriminative ICs by averaging the attention maps for
each subject, but they are not totally the same across all subjects,
for example, the same ICs may be emphasized differently, impli-
cating the potential for individualized localization of brain regions.

3.5. Comparison with dynamic FNC features(dFNC)

Since dFNC also simultaneously characterized functional depen-
dency and temporal dynamics of spontaneous BOLD signal, we also
compared other deep learning methods using dFNC with our pro-
posed HDLFCA, which also integrated dynamic FCs and TCs to im-
prove classification performance. The dFNC was computed by the
sliding window method in steps of 1 TR. We conducted multi-
ple experiments under different settings, where the window length
varies from the 30s to 70s at intervals of 10s (15-35 TR). A com-
parison of classification performance was reported in Table 5. More
details are available in the supplementary materials (Table S4 and
Figure S2).

From Table 5 and Table S4, we can observe that the proposed
HDLFCA outperformed the best performing dFNC-based DL meth-
ods in all metrics significantly (p<0.01). For instance, in terms of
ACC, HDLFCA achieved an improvement of 4.6%, 4.9%, 4.5% and
5.5% compared with the best results achieved by LSTM, BiLSTM,
GRU, and C-LSTM respectively, suggesting the superiority of our
method. The lower performance of C-LSTM compared to LSTM
may be attributed to the high dimension of the FNC vector (1225,
compared to 50 in previous TC-based methods), which largely in-
creased the parameters of the model. Furthermore, GRU based on
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Fig. 3. The most HC-SZ discriminative features localization. (A) Illustration of the top 50, 70 and 100 contributing functional network connectivities identified by LRP. Connec-
tions between frontal network and default mode networks, frontal network and attention networks, and connections within visual networks indicate the most contributing
influence, suggesting that schizophrenia is characterized by impairment in high-level cognitive and emotional processing circuits. (B) The frequency distribution histogram
of top 10 ICs identified by attention module in 100 experiments. The striatum, cerebellum, anterior cingulate stand out as the top three most discriminating brain regions.
Putamen-4 represents the ICs showing subcortical regions such as caudate and putamen (striatum). The spatial maps of all 50 ICs were displayed in Figure S1.

Table 5

Comparison with alternative classification methods using dynamic FNC on HC-SZ classification.
Methods Feature ACC SPE SEN F1 AUC
GRU TCs 76.9+0.5%* 74.4+1.0% 79.3+£0.7** 77.8+£0.5%* 84.3+0.3**
LSTM DFNC 80.5+0.5** 81.5+1.2** 79.6+1.0%* 80.6+0.5** 88.8+0.3**
BiLSTM DFNC 80.2+0.5** 81.1+£2.0** 79.4+1.6** 80.3+£0.5%* 88.7+£0.4%*
GRU DFNC 80.6+0.9** 80.5+1.1%* 81.14£2.3** 81.1+£1.2%* 88.7+0.6**
C-LSTM DFNC 79.6+0.7** 80.2+2.0** 78.9+1.2*%* 79.7+0.6** 88.0+0.4**
HDLFCA FNC+TCs 85.1+0.4 82.8+0.8 87.3+0.8 85.6+0.3 92.1+0.2

Notes: LSTM: Long short-term memory network; BiLSTM: Bidirectional LSTM; GRU: gated recurrent unit; C-LSTM: CNN+LSTM; */**
denote that the proposed HDLFCA method achieves significantly better performance than the listed ones with p=0.05/0.01.

dFNC outperformed the same neural network based on TCs signif- ering the great power in sequence modeling of RNN and the rich
icantly, which only contains temporal dynamics of brain activity, temporal dynamics of brain activity in time series of BOLD-signal,
suggesting the effectiveness to integrate brain connectivity and ac- we first directly applied simple RNN and GRU in the same settings
tivity of rs-fMRI data. to classify brain disorders. The results showed the GRU models

achieved an improvement of 23.6% in ACC, possibly because simple
3.6. Comparison with different DL architectures RNN is difficult to learn long-term dependencies due to the vanish-

. ) AM ) ing and exploding gradient problem (Bengio et al., 1994) and the

In this section, we compared the proposed C-RNN"* with eight  prain activity is characterized by long-range temporal dependence

alternative deep learning models in multi-site pooling experiments such that signal fluctuations at the present time influence sig-
on In-House datasets. The results were reported in Table 6. Consid-
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Table 6

Performance comparison of different DL architectures on SZ classification based on multi-site pooling
Methods Feature ACC SPE SEN F1 AUC
S_RNN TCs 53.3+0.9** 43.7+1.1** 62.54+0.9** 57.7+0.8** 53.8+£0.4**
GRU TCs 76.94+0.5** 74.4+1.0** 79.3+£0.7** 77.84+0.5** 84.3+0.3**
C-MLP TCs 77.1+ 0.4* 75.7+£0.8** 78.4+0.7+* 77.7+0.4** 86.7+0.3**
S_C-RNN TCs 80.5+0.5** 79.4+1.0** 81.44+0.9** 80.94+0.5** 88.54+0.4**
C-RNN TCs 82.5+0.9* 80.8+1.1 84.24+0.9* 83.1+0.8* 90.8+0.4
AM_1 TCs 83.4+0.5 81.6+1.0 85.1+0.7 83.9+0.5 91.0+0.3
AM_2 TCs 83.4+0.4 81.6+0.8 85.2+1.1 83.9+0.4 91.3+0.3
AM_3 TCs 54.84+0.6** 54.4+0.6** 55.3+£1.2** 55.54+0.8** 57.3+0.4**
C-RNNAM TCs 83.5+0.5 81.5+0.9 85.4+0.5 84.0+0.5 91.4+0.3

Notes: */** denote that the proposed HDLFCA method achieves significantly better performance with P value=0.05/0.01. S_RNN:
simple RNN. C-MLP: the convolutional layer (CON) has different kernel size as C-RNN and the fully connected layers was followed.
S_C-RNN: the CON has fixed kernel size and the other architecture was the same as C-RNN. AM_1: the CON in AM was one kernel
with 4*1 size. AM_2: the CON in AM was replaced by the shared MLP, including three fully connected layers with 50, 10 and 50
hidden nodes respectively. AM_3: a spatial-temporal attention module based on the proposed attention module (AM) in this work
to emphasize important time points and regions simultaneously.

nal dynamics up to several minutes in the future (Dhamala et al.,
2020; Guclu and van Gerven, 2017). The C-RNN further outper-
formed GRU and C-MLP, potentially because the convolutional and
GRU layers were responsible for capturing spatial and temporal
information respectively. The C-RNN with multi-scale convolution
kernel size outperformed the S_C-RNN with single-scale convolu-
tion kernel, suggesting that extracting dynamics from a variety of
timescales is useful in fMRI data.

Moreover, we designed 4 variants of attention mechanism in-
tegrated into C-RNN models. The architectures were illustrated in
Fig. S5. Specifically, C-RNNAM achieved a light increase compared
with AM_1, suggesting capturing global relations between brain
networks is more effective than local relations. AM_3 performed
worse than others, showing that the emphasizing important brain
regions play an essential role in brain disorder classification.

4. Discussion

In this study, we proposed a novel unified DL framework by in-
tegrating temporal coherence and dynamics effectively to classify
brain disorders. The classification accuracy of 85.1% and 81.0% were
achieved in multi-site pooling and leave-one-site-out respectively
in the task of HC-SZ discrimination. Moreover, when using pub-
licly accessible ABIDE dataset, ACC of 72.4% was achieved in the
multi-site pooling classification of HC vs. ASD, which significantly
outperformed multiple single feature-based methods. The compet-
itive result is comparable to, if not better than, the recent stud-
ies on large multi-site fMRI datasets (Kim et al., 2016; Yan et al.,
2019; Zeng et al., 2018). Additionally, LRP and an attention mod-
ule were introduced to identify the most discriminative FNC pat-
terns and brain regions for SZ. To the best of our knowledge,
this is the first attempt to integrate identification of discriminative
brain regions and diagnosis of brain disorders into a unified frame-
work based on fMRI data using an attention mechanism-based
network.

Recently, numerous studies have applied deep learning meth-
ods for SZ classification and achieved high performance. Compared
with previous studies (Dakka et al., 2017; Rozycki et al., 2018;
Skdtun et al., 2017), this work achieved an improvement (>5.0%) in
accuracy on multi-site pooling and leave-one-site-out classification.
The promising results may derive from the following aspects: First,
we combined different powerful deep learning models to lever-
age complementary information between TCs and FNC, where the
TCs neglects the functional dependency between brain regions and
FNC discards sequential temporal dynamics. The experimental re-
sults demonstrated the superiority of combing multiple features.
Second, the attention module helps to refine and optimize fea-
ture representation by focusing on more important brain regions

instead of the full feature. The experimental results also showed
the attention module improved classification performance. Third,
since the convolutional neural network (CNN) is ‘deep in space’
and RNN is ‘deep in time’, both of them were applied to make
full use of the spatial and temporal information underlying the
spontaneous BOLD signal. Furthermore, to validate the superiority
of our method, the HDLFCA was compared with other deep learn-
ing methods based on dFNC, which also takes dynamic fluctuation
and temporal coherence into consideration. Our method achieved
an improvement (>4.0%) of average accuracy. Importantly, the goal
of our method is not only to focus on high performance, but also to
provide results that are interpretable and provide insight into the
brain. The attention module provides an effective way to explore
underlying biomarkers in DL methods. It allows for the integration
of discriminative ICs localization and SZ diagnosis into a unified
framework, since the isolated informative region identification may
lead to suboptimal performance. What’s more, the discriminative
ICs are not totally the same across all subjects, showing the im-
portance of individualized localization of brain regions associated
with schizophrenia.

The results revealed that the attention module highlighted
brain regions at the locations of the striatum, cerebellum and
anterior cingulate. The striatum, including putamen and cau-
date, has been proved to play a vital role in the pathophysiol-
ogy of schizophrenia (Yan et al., 2019). Compelling evidence has
shown that the striatum was involved in cognition domains, in-
cluding motor, decision-making, and stimulus-response learning
(Yager et al, 2015). Recently, numerous findings converged on
evidence for both an increase in striatal dopamine and striatal
dopamine receptors. The dopaminergic hyperfunction in the stria-
tum may contribute to cognitive deficits in SZ (McCutcheon et al.,
2019). Moreover, the increase of D2 receptors was found to be pre-
dictive for treatment response and the popular antipsychotics usu-
ally blocks the dopamine D2 receptors in the striatum (Li et al.,
2020; Sarpal et al., 2016). Another highlighted component was the
cerebellum. Many studies showed significant evidence for cere-
bellar abnormalities in SZ, such as impairment white matter in-
tegrity and blood flow decrease in the cerebellum during cogni-
tion tasks(Andreasen and Pierson, 2008; Kim et al., 2014; Luo et al.,
2018; Yan et al., 2021). In addition, the other important component
identified by attention module was located in the anterior cingu-
late cortex (ACC). Previous studies have demonstrated that a fail-
ure of functional ACC is associated with disturbed cognitive control
and working memory deficits in SZ greatly (Fletcher et al., 1999;
Fletcher et al., 1996) and SZ patients exhibit significantly reduced
ACC activation (Schultz et al., 2012). Overall, the most group dis-
criminative brain regions can be easily traced back with convincing
biological interpretability, implying that the attention module em-
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phasized important ICs effectively and our method showed great
promise to identify potential imaging biomarkers.

Although the proposed HDLCD achieved high performance in
discriminative ICs localization and psychotic disorder classification,
several limitations should be considered in the future. First, C-
RNNAM and DNN were trained independently and then their pre-
dictions were fed into meta-learner to utilize complementary infor-
mation between TCs and FNC, which makes the later fusion stage
couldn’t help refine feature representations in the first stage. A
promising direction is to integrate the two stages into a purely
end-to-end framework to provide complementary guidance for
each other. Second, static FNC as the most commonly used func-
tional connectivity feature, was combined with brain activity (TCs)
as input features in this work. Nevertheless, it is interesting to in-
vestigate whether combining dynamic connectivity and brain ac-
tivity can further advance classification performance in the future.

5. Conclusions

In this work, we proposed HDLFCA, a unified framework that
takes fully advantage of temporal coherence (FNCs) and time-
varying fluctuations (TCs) jointly to classify psychiatric disorders
based on rs-fMRI data. The method was validated on both In-
House SZ dataset (n = 1100) and the public ABIDE datasets
(n = 1552), with 2.8-8.9% increase compared to 12 popular clas-
sifiers, suggesting the superiority of combining multiple features.
To the best of our knowledge, this is the first attempt to introduce
an attention module into a C-RNN based framework to improve
the classification performance and automatically identify discrimi-
native brain regions. Such a method shows the potential for deep
learning to provide utility for both predicting and understanding
the healthy and disordered brain.
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