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a b s t r a c t 

Functional magnetic resonance imaging (fMRI) as a promising tool to investigate psychotic disorders can 

be decomposed into useful imaging features such as time courses (TCs) of independent components (ICs) 

and functional network connectivity (FNC) calculated by TC cross-correlation. TCs reflect the temporal 

dynamics of brain activity and the FNC characterizes temporal coherence across intrinsic brain networks. 

Both features have been used as input to deep learning approaches with decent results. However, few 

studies have tried to leverage their complementary information to learn optimal representations at mul- 

tiple facets. Motivated by this, we proposed a Hybrid Deep Learning Framework integrating brain Con- 

nectivity and Activity (HDLFCA) together by combining convolutional recurrent neural network (C-RNN) 

and deep neural network (DNN), aiming to improve classification accuracy and interpretability simultane- 

ously. Specifically, C-RNN 

AM was proposed to extract temporal dynamic dependencies with an attention 

module (AM) to automatically learn discriminative knowledge from TC nodes, while DNN was applied to 

identify the most group-discriminative FNC patterns with layer-wise relevance propagation (LRP). Then, 

both prediction outputs were concatenated to build a new feature matrix, generating the final decision 

by logistic regression. The effectiveness of HDLFCA was validated on both multi-site schizophrenia (SZ, n 

∼ 1100) and public autism datasets (ABIDE, n ∼ 1522) by outperforming 12 alternative models at 2.8-8.9% 

accuracy, including 8 models using either static FNC or TCs and 4 models using dynamic FNC. Appreciable 

classification accuracy was achieved for HC vs. SZ (85.3%) and HC vs. Autism (72.4%) respectively. More 

importantly, the most group-discriminative brain regions can be easily attributed and visualized, provid- 

ing meaningful biological interpretability and highlighting the great potential of the proposed HDLFCA 

model in the identification of valid neuroimaging biomarkers. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) has been a 

romising tool to provide novel insights into the brain function 

bnormalities of psychotic disorders ( Andreou, 2020 ). Based on 

ultivariate decomposition such as independent component anal- 

sis (ICA) ( Du and Fan, 2013 ), useful imaging features such as 

ndependent components (ICs), their corresponding time courses 
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TCs) and functional network connectivity (FNC) ( Calhoun and 

dali, 2006 ; Jafri et al., 2008 ; Smith et al., 2009 ) can be easily ex-

racted and widely used in studies of mental disorders ( Fig. 1 A). 

pecifically, TCs reflect the temporal fluctuations of each IC, i.e. , 

he spatially distinct brain regions, while FNC characterizes the 

emporal coherence across the selected ICs by correlating their 

Cs, representing the intrinsic connectivity networks ( Calhoun and 

dali, 2012 ; Seeley et al., 2007 ; Supekar et al., 2009 ). Both fea-

ures have been widely used in brain disorder comparison and 

lassification. 

On the other hand, with the ability to characterize discrim- 

native patterns and learn optimal representations automatically 

rom neuroimaging data, deep learning (DL) methods have re- 

eived growing attention in fMRI-based diagnosis of mental disor- 

https://doi.org/10.1016/j.media.2022.102413
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102413&domain=pdf
mailto:jsui@bnu.edu.cn
https://doi.org/10.1016/j.media.2022.102413
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Fig. 1. The framework of the proposed HDLFCA in psychotic disorder classification. (A) Data preprocessing and Feature extraction. TCs was obtained by decomposing fMRI 

data using GIG-ICA, and FNCs was estimated from the TCs. (B) Overview of our proposed HDLFCA. C-RNN 

AM and DNN were used to characterize temporal dynamics in TCs 

and learn functional dependency between brain regions respectively. Then their predictions were concatenated to build a new feature matrix, generating the final decision 

by logistic regression. For model interpretability, attention module and layer-wise relevance propagation (LRP) were applied to identify the most discriminative ICs and FNC 

patterns respectively. (C) Details of the C-RNN 

AM . It consists of an attention module, multiple 1D convolutional (Conv1D) layers, one concatenation and max pooling layer, 

two gated recurrent unit (GRU) layers and a fully connected layer. The purple frame shows the scheme of the attention module, which is trainable along with other modules. 

The greater the weight of the attention map, the more important the component was. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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ers. One of the most commonly used DL input features is func- 

ional (network) connectivity calculated based on either a brain 

tlas or ICA ( Du et al., 2018 ). For example, Kim et al. trained a

eep neural network (DNN) based on FNC, with L1-norm to mon- 

tor weight sparsity, achieved substantial performance improve- 

ent ( Kim et al., 2016 ). Zeng et al. presented a sparse autoencoder

o learn imaging site-shared FCs, which was then used to guide 

VM training on multi-site datasets for schizophrenia (SZ) diag- 
2 
osis ( Zeng et al., 2018 ). Similarly, in order to exploit the wealth

f temporal dynamic information in BOLD signals, recurrent neu- 

al networks (RNN)-based approaches have also been proposed to 

ork on fMRI time series. Particularly, Yan et al. proposed multi- 

cale RNN on the TCs ( Yan et al., 2017 ) and Dakka et al. adopted

 recurrent convolutional neural network (R-CNN) on 4-D fMRI 

ecordings at the whole-brain voxel level ( Dakka et al., 2017 ) to 

istinguish patients with SZ from healthy controls (HCs). Moreover, 
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Table 1 

Demographic information of datasets. 

Mean ±SD SZ HC P -value 

Number 558 542 NA 

Age 27.6 ±7.1 28.0 ±7.2 0.06 

Gender(M/F) 292/266 276/266 1.96 

PANSS positive 23.9 ±4.2 NA NA 

PANSS negative 20.1 ±5.9 NA NA 

PANSS general 39.7 ±7.2 NA NA 

PANSS total 83.6 ±12.3 NA NA 

Notes: P -value: the significance value of two sample t-test. NA: not applicable. 
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ynamic FNC (dFNC) has also been adopted with or without com- 

ining with static FNCs to discriminate brain disorders, which can 

urther improve prediction accuracy ( Cetin et al., 2016 ; Du et al., 

017 ; Rashid et al., 2016 ). 

However, despite the significant advances in fMRI-based classi- 

cation, the complementary information between spatial-temporal 

oherence (FNC) and temporal dynamics of brain activity (TCs) 

ave not been fully leveraged to take advantage of fMRI data. 

o our knowledge, there are no deep models yet combining both 

unctional connectivity and activity as input features. To address 

his issue, we are motivated to propose a Hybrid Deep Learning 

ramework integrating brain Connectivity and Activity (HDLFCA) 

ogether by combining DNN and C-RNN (convolutional recurrent 

eural network), aiming to enhance the classification performance 

or brain disorders by capitalizing on multi-domain neuroimaging 

nformation. The prediction outputs of the two neural networks 

ere then concatenated to build a new feature matrix, generating 

he final decision by logistic regression ( Fig. 1 B). 

Another point that needs to mention is the lack of interpretabil- 

ty of DL methods, which often limited their use in clinical con- 

exts due to the ‘black-box’ nature of deep layers ( Kohoutová et al., 

020 ). To this end, the attention mechanism, inspired by human 

erception, was developed to improve the interpretability of DL 

odels, and has been employed in various medical imaging data 

ining cases. For instance, Lian et al. developed an attention- 

uided DL framework for dementia diagnosis ( Lian et al., 2020 ), 

ncluding a full CNN to localize the discriminative regions and a 

ybrid network to fuse multi-level spatial information. Similarly, 

in et al. proposed an attention-based 3D CNN for Alzheimer’s dis- 

ase diagnosis ( Jin et al., 2020 ). However, most existing attention- 

uided DL studies focused on structural images such as structural 

RI (sMRI) and Computed Tomography (CT) ( Chen et al., 2020 ; 

ong et al., 2019 ; Lei et al., 2020 ), less attention has been paid

o fMRI data due to its higher dimensionality. In this work, we 

ropose two schemes to improve the interpretability: 1) to de- 

elop an attention-guided C-RNN for TCs, i.e., C-RNN 

AM , which en- 

bles learning of temporal dynamics and identification of the most 

iscriminative TC nodes (ICs) integrated into a unified framework 

 Fig. 1 C). 2) In parallel, layer-wise relevance propagation (LRP) was 

pplied to DNN layers, searching for the most discriminative FNC 

atterns. Taken together, the most contributing fMRI features for 

roup discrimination were identified and visualized, improving the 

hole model interpretability. 

To validate the effectiveness of our proposed method, HDLFCA, 

igorous comparisons have been made with 12 popular meth- 

ds. Specifically, we compared with 8 alternative models based on 

tatic FNC or TCs and 4 DL methods using dynamic FNC, which 

lso characterized functional connectivity and dynamics of BOLD 

ignals simultaneously. These tests were performed using In-House 

ulti-site dataset (558 SZ and 541 HCs) and public ABIDE datasets 

743 ASD and 779 HCs). Experimental results showed our method 

utperformed 12 alternative models by 2.8-8.9%, achieving SZ-HC 

lassification accuracy at 85.1% and 81.0% for the multi-site pooling 

nd leave-one-site-out respectively, and 72.4% for ABIDE dataset 

ith multi-site pooling. More importantly, the most group discrim- 

native brain regions can be easily traced back with convincing bi- 

logical interpretability, suggesting the great promise of HDLFCA to 

dentify potential imaging biomarkers. 

. Materials and methods 

.1.Participants 

For In-House dataset, participants (558 schizophrenia patients 

nd 542 HCs) were recruited from 7 hospitals, including Peking 

niversity Sixth Hospital (PKU6), Beijing Huilongguan Hospital 
3 
HLG), Xinxiang Hospital Simens (XX#1), Xinxiang Hospital GE 

XX#2), Xijing Hospital (XJ), Renmin Hospital of Wuhan University 

RWU) and Zhumadian Psychiatric Hospital (ZMD). Demographic 

nd clinical information of subjects were listed in Table 1 and Table 

1. All patients with SZ are diagnosed by experienced psychiatrists 

sing the Structured Clinical Interview for DSM-IV-TR Disorders. 

ll HCs are interviewed using the SCID-Non-Patient Version and 

xcluded if their first-degree relatives had any psychotic disorders. 

esides, none of the participants had neurological disorders, sub- 

tance abuse or dependence, pregnancy, and prior electroconvul- 

ive therapy or head injury resulting in loss of consciousness. The 

everity of positive and negative symptoms was assessed accord- 

ng to PANSS scores. Two sample t-test and Chi-square test were 

erformed to measure the difference of age and gender between 

Cs and patients respectively. This study has been approved by 

he ethical committees and all subjects provided written informed 

onsent, including permission to share data between centers. 

For public ABIDE dataset (743 patients with ASD and 779 HCs), 

he detailed demographic information of datasets was listed in Ta- 

le S14. 

.2. Image acquisition 

For all sites in In-House datasets, scanning parameters are as 

ollows: repetition time (TR) = 20 0 0 ms; echo time (TE) = 30 

s; flip angle (FA) = 90 °; field of view (FOV) = 220 × 220mm; 

atrix = 64 × 64; slice thickness = 4 mm; gap = 0.6 mm; 

lices = 33. The resting-state fMRI data were collected on a 3T Tim 

rio scanner (Siemens) in PKU6, HLG and XJ sites, Verio scanner 

Siemens) in XX#1 site, 3T Signa HDx GE scanner (General Elec- 

ric) in the other sites. Subjects were instructed to lie still, keep 

heir eyes closed, stay awake, and minimize head movement with 

oam padding and earplugs. Details of all sites were listed in Table 

2. 

.3. Data preprocessing 

All resting-state fMRI data were preprocessed with the same 

rocedures as we did in Liu et al. (2019 ) using the SPM software

ackage ( http://www.fil.ion.ucl.ac.uk/spm/ ). The first ten volumes 

f each scan time series were discarded for magnetization equi- 

ibrium. The following processing pipeline was then performed: 1) 

lice timing correction to the middle slice; 2) motion correction to 

he first image; 3) normalization into the standard Montreal Neu- 

ological Institute (MNI) space, and resliced to 3 ×3 ×3 mm; 4) de- 

oising and spatially smoothing using an 8 mm full width half max 

FWHM) Gaussian kernel. 

To control the effects of motion artifacts, each subject has been 

valuated with a maximum displacement that did not exceed ±
 mm (translation) or ± 3 ° (rotation). The group difference in the 

ean framewise displacement (FD) between HC and SZ groups was 

ot significant (HC: 0.137 ± 0.071, SZ: 0.142 ± 0.085, two-sample 

-test: p = 0.98). 

http://www.fil.ion.ucl.ac.uk/spm/
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.4. Feature extraction 

Imaging data were decomposed into spatial functional networks 

nd back-reconstructed using Group-guided independent compo- 

ent analysis (GIG-ICA) ( Calhoun et al., 2001 ; Du et al., 2016 ;

u and Fan, 2013 ; Du et al., 2020 ) in the GIFT software ( http:

/trendscenter.org/software/gift ). We chose a high model order ICA 

number of components = 100) to decompose the functional net- 

orks showing temporally coherent activity as our previous work 

 Luo et al., 2020 ; Zhi et al., 2018 ). For subject-level data, 150 prin-

ipal components were retained by principal component analy- 

is (PCA). For group-level data, acquired by concatenating subject 

ata across time, 100 principal components were retained using 

CA again. Afterward, the Infomax ICA algorithm was repeated 20 

imes using ICASSO followed by selection of the most represen- 

ative result, to improve the reliability of the decomposition, re- 

ulting in 100 stable group ICs ( Du et al., 2014 ; Yan et al., 2021 ).

0 ICs were further selected and characterized as intrinsic con- 

ectivity networks, which showed higher low-frequency spectral 

ower and presented minimal overlap with white matter, ventri- 

les, and edge regions ( Allen et al., 2011 ). The 50 spatial maps are

orted into eight domains as listed in Fig. S1. Furthermore, subject- 

pecific time courses and spatial maps were back-reconstructed us- 

ng GIG-ICA ( Du et al., 2016 ; Du and Fan, 2013 ). The following addi-

ional post-processing steps were performed on the selected com- 

onent TCs: linear, quadratic and cubic detrending, regressing out 

ix realignment parameters and their temporal derivatives, despik- 

ng, and low-pass filtering ( < 0.15 Hz). 

As shown in Fig. 1 , the subject-level TCs with a size of 50 ×170

ICs × time points) are used as the input of the RNN-based model. 

earson’s correlation between TCs of each pair of ICs was calcu- 

ated, yielding a symmetric connectivity matrix of 50 ×50. The FNC 

atrix was further reshaped into a vector with a dimension of 

50 × 49)/2 = 1225 using the upper triangle elements, which were 

sed as input features of DNN. 

.5. Methods 

.5.1. Hybrid deep learning framework integrating brain connectivity 

nd activity (HDLFCA) 

As shown in Fig. 1 B, we proposed a Hybrid Deep Learning 

ramework integrating brain Connectivity and Activity (HDLFCA) to 

nhance the performance for brain disorder classification by taking 

dvantage of both temporal coherence and dynamic neuroimaging 

nformation. In the first stage, different DL models were designed 

o characterize heterogeneous features and leverage complemen- 

ary information between TCs and FNC. Specifically, we used the 

-RNN 

AM to capture time-varying fluctuations in fMRI time se- 

ies, with the attention module integrated to automatically extract 

he most discriminative TCs. Meanwhile, we used DNN to learn 

unctional interaction between ICs, where LRP was performed to 

dentify the most group-discriminative FNC patterns. In the second 

tage, the outputs from the above two models were concatenated 

o create a new feature matrix to train a logic regression, whose 

utput is the final decision. 10-fold cross-validation was conducted 

o evaluate the performance of models. The implementation details 

ere depicted in section 2.6. 

.5.2. Convolutional recurrent neural network with attention module 

C-RNN 

AM ) 

1) Overview: As shown in Fig. 1 C, the C-RNN 

AM network consists 

f an attention module, three 1D convolutional layers with differ- 

nt kernel sizes, one concatenation layer, one max pooling layer, 

wo gated recurrent unit (GRU) layers, and a fully connected layer. 

he processed TCs were fed to the C-RNN 

AM network to gener- 
4 
te the intermediate prediction P 1 ∈ R N×1 , where N is the number 

f training samples. 

Although RNN has great power in sequence modeling, it is still 

hallenging for it to deal with high dimension spatiotemporal fMRI 

ata with lots of redundant information. To solve this problem, we 

rst used Conv1D layers as an ‘encoder’ to learn correlations be- 

ween brain regions, followed by max-pooling layer. The Conv1D 

ayers extract local information from neighboring time points in 

he space dimension and the pooling layer downsample data in 

he time dimension ( Roy et al., 2019 ; Yan et al., 2019 ). Consid-

ring the brain dynamics at different timescales can capture dis- 

inct aspects of human behavior ( Liegeois et al., 2019 ), we ex- 

anded simple convolution layers by applying multiple Conv1D 

ayers with different kernel sizes so that the next stage would ag- 

regate dynamic brain activity from multiple time scales simulta- 

eously. Since the filter lengths vary exponentially rather than lin- 

arly ( Szegedy et al., 2015 ), we set the size of three convolutional

lters as 32 ×2 ×50 (number of filters × time scales × ICs), 16 ×4 

50 and 16 ×8 ×50, resulting in three feature maps with a size of 

70 ×32 (time scales × ICs ×number of filters), 170 ×16 and 170 ×16 

espectively. A concatenation layer was followed to integrate fea- 

ures with different time scales. Furthermore, a max-pooling layer 

as performed to downsample along the time axis with 3 ×1 ker- 

el size, resulting in 56 ×64 features (time points ×feature dimen- 

ion) as the input of GRU layers. 

Considering the brain activity is characterized by long-range 

emporal dependence such that signal fluctuations at the present 

ime influence signal dynamics up to several minutes in the future 

 Dhamala et al., 2020 ; Guclu and van Gerven, 2017 ), while con-

entional RNNs often fail to learn long-term dependencies due to 

he gradient exploding and vanishing problems during the back- 

ropagation ( Bengio et al., 1994 ). Therefore, we proposed to uti- 

ize GRU layers to learn useful representations of brain activity pat- 

erns, which can mitigate the gradients problem by controlling in- 

ormation flow with gating mechanisms ( Roy et al., 2019 ). In this 

tudy, two GRU layers were stacked in the HDLFCA to capture both 

hort- and long-term dependencies in BOLD time series. It is worth 

oting that each GRU layer was densely connected to the other 

RU layers to mitigate the degradation problem, which provided 

hort-cut paths during back-propagation ( Huang et al., 2017 ). The 

ize of hidden states units was set as 32. To make full use of brain

ctivity throughout the scan, the GRU outputs were further aver- 

ged, and two fully-connected layers were followed to give the in- 

ermediate prediction, which was then concatenated for the final 

ecision. 

2) Attention Module: The attention module was proposed to in- 

rease representation power and improve interpretability by focus- 

ng on important brain regions and suppress unnecessary ones. The 

chematic of attention module is illustrated in Fig. 1 C. Given the 

reviously processed TCs X ∈ R 170 ×50 as input, where 170 and 50 

re the number of time points and ICs, the attention module gen- 

rated an attention map M(X ) ∈ R 50 ×1 ×1 . The attention process can 

e defined as follows: 

 

′ = B (M(X )) � X 

here � denotes element-wise multiplication and B (·) denotes 

roadcast operations : the attention values M(X ) was copied along 

ime dimension accordingly and then reshaped into the same size 

ith X ′ is the refined feature. 

To construct the attention module, TCs inputs were reshaped 

nto a matrix of size 50 ×1 ×170. The average-pooling calculates the 

ean value of all elements in the pooling region, and may re- 

uce the contrast of the new feature map, while max-pooling only 

ses the maximum element and ignores the others, which may 

e useful for classification tasks ( Yu et al., 2014 ). Therefore, we 

dopted both of these along the time axis to learn temporal statis- 

http://trendscenter.org/software/gift
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ics and aggregate temporal information fully ( Woo et al., 2018 ). 

fter that, two temporal context descriptors: F max and F avg , which 

enote max-pooled features and average-pooled features respec- 

ively, were generated and were concatenated to produce an effi- 

ient feature descriptor. We applied a convolution layer and sig- 

oid activation to produce an attention map. Note that the size 

f filter is 50 ×1, which has the same dimension as the number of 

Cs rather than a smaller size to extract global relations among ICs. 

nd the number of filters is 50, each of them was responsible for 

earning the importance of one IC. Integrated in the unified frame- 

ork, the attention map tells ‘which region’ is an informative part, 

amely, the greater the weight of the attention map, the higher the 

iscrimination power of the brain region. To sum up, the attention 

odule can be denoted as follows: 

 ( X ) = σ ( conv ( [ AvgP ool ( X ) ; MaxP ool ( X ) ] ) ) 

= σ (con v ( F a v g ; F max )) 

here σ is the sigmoid function. 

.5.3. Deep neural network (DNN) 

Given the FNC as input, the deep neural network was applied 

o learn high-level hierarchical feature representation and give the 

ntermediate prediction P 2 ∈ R N×1 . DNN was composed of one in- 

ut layer, two hidden layers, and one output layer. The size of hid- 

en notes was set 32 and 16 respectively. L 2 norm regularization 

nd dropout strategies were used to avoid overfitting as reported 

n ( Srivastava et al., 2014 ). 

Based on the trained models, LRP was introduced to identify 

mportant FNC patterns for classification decisions, and it decom- 

osed the prediction of DNN over a test sample down to rele- 

ance scores for the single input dimensions such as each FNC 

ere. Supposing there arelayers in total, the relevance of output 

euron can be obtained in a feed-forward fashion: R 1 
(M) = f (x ) . 

− rule was performed to compute the propagation of relevance 

rom layer l + 1 to layer l

 

(l ,l +1) 
i ← j 

= 

(
(1 + β) 

z + 
i j 

z + 
j 

− β
z −

i j 

z −
j 

)
R 

(l+1) 
j 

 i j = x i w i j , z 
+ 
j 

= 

∑ 

i 
z + 

i j 
+ b + 

j 
, z −

j 
= 

∑ 

i 
z −

i j 
+ b −

j 

here z + 
i j 

and z −
i j 

denotes positive and negative activations respec- 

ively. b + 
j 

and b −
j 

denote the positive and negative part of the bias 

tem b j . R 
(l+1) 
j 

and R (l ,l +1) 
i ← j 

denotes the relevance of a neuron jat layer 

 + 1 , and message between neurons i at the layer l and neurons

at layer l + 1 respectively. β controls how much inhibition is in- 

orporated into the relevance redistribution. Then the relevance of 

 neuron i at layer l was defined by summing messages from neu- 

ons at layer l + 1 : 

 

(l) 
i 

= 

∑ 

j∈ (l+1) 

R 

(l ,l +1) 
i ← j 

Therefore, the relevance score R d 
(1) of each FNC was determined 

y this rule. For more details on LRP, please refer to ( Bach et al.,

015 ). 

.6. Implementation details 

The HDLFCA was implemented via nested cross-validation us- 

ng the Keras package ( https://keras.io/ ). In each one of the 10 fold

xperiment, the 3-fold cross-validation was performed further to 

void overfitting. Specifically, training data was divided into three 

olds further in the training stage, where two folds were used for 

raining and validation, and the remaining one was used for pre- 

iction. After 3-fold cross-validation, predictions from three DNN 
5 
odels were concatenated to constitute intermediate prediction P1 

nd so does C-RNN 

AM to generate P2, which were used for the final 

ecision. In the testing stage, the outputs of three DNN models and 

hree C-RNN models were first averaged respectively, then two pre- 

ictions were concatenated to build the final decision by logistic 

egression. The procedures of the training and testing phase were 

llustrated in Fig. S4. An implementation for HDLFCA is available at 

ttps://github.com/minzhaoCASIA/HDLFCA . 

The C-RNN model was trained by the Adam optimizer with 

n initial learning rate of 0.001 and decayed with the rate of 

.01. Dropout (0.5) and L 1,2 -norm regularization (L1 = 0.0 0 01, 

2 = 0.0 0 01) were performed to control weight sparsity. The batch 

ize was set at 64. The DNN model was trained with the cross- 

ntropy loss by the Adam optimizer with an initial learning rate 

f 0.001. The performance of methods was evaluated by five met- 

ics including accuracy (ACC), specificity (SPE), sensitivity (SEN), 

1-score (F1) and area under the receiver operating characteris- 

ic curve (AUC). The performance of different algorithms was com- 

ared via a two-sample t-test. 

. Results 

.1. Multi-site pooling classification 

Ten-fold multi-site pooling experiments were conducted to 

valuate classification performance, where fMRI data from all sites 

ere pooled together and ten-fold cross-validation was performed. 

ll experiments were repeated 10 times to generate mean and 

tandard deviations of metrics. We compare HDLFCA with eight 

ompeting methods on both In-House and ABIDE datasets. The 

uantitative results in the task of classification are reported in 

able 2 , Table 3 and Fig. 2 . 

As shown in Fig. 2 , first , the HDLFCA reported a mean classifica-

ion accuracy of 85.3% and 72.4% on In-House and ABIDE datasets, 

ndicating a significant improvement over the other classical clas- 

ifiers (p < 0.01). For instance, HDLFCA achieved an improvement 

f 8.9%, 8.3% and 3.8% in ACC compared with Random Forest, Ad- 

Boost and SVM, respectively on In-House datasets. This implied 

he significant effectiveness of learning high-level, “deep” features 

rom fMRI data. Second , compared with BrainNetCNN, DNN, C- 

NN and C-RNN 

AM that adopted features of either FNC or TC 

nly, the proposed HDLFCA that exploits complementary informa- 

ion between them led to a better diagnostic performance on two 

atasets. For example, in terms of ACC, an improvement of 5.2%, 

.4%, 2.8% and 1.8% was achieved on HC-SZ datasets respectively, 

nd an improvement of 3.9%, 2.0%, 3.3% and 3.0% was achieved 

or ABIDE datasets, suggesting the necessity and validity of inte- 

rating functional dependency between brain regions and tempo- 

al dynamics of brain activity. Third , the comparative performance 

f C-RNN 

AM and C-RNN in SZ classification showed that C-RNN 

AM 

chieved an improvement of about 1% in terms of ACC, SPE, SEN 

nd F1 values, demonstrating that incorporation of discriminative 

C localization and disease classification into a unified framework 

oosts the final performance. It should be noted that although the 

ttention module identified the discriminative ICs as well as im- 

roved performance, it did not cause an increase in model com- 

lexity. Forth , our HDLFCA outperformed the connectivity-based 

raph convolutional network (cGCN) ( Wang et al., 2021 ) signifi- 

antly on two datasets as well, which also used TCs and FCs to 

xtract similar connectome features. 

Furthermore, to validate the generalizability of HDLFCA, we re- 

roduce the experiments based on TCs obtained from Automated 

natomical Labeling (AAL) template instead of ICA, where the 

ean regional TCs were calculated by averaging the voxel-wise 

MRI time series in each of brain regions of interests (ROI). Pear- 

on’s correlation between TCs of each pair of ROIs was calcu- 

https://keras.io/
https://github.com/minzhaoCASIA/HDLFCA
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Table 2 

Performance comparison in multi-site pooling classification on In-House schizophrenia datasets. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 76.4 ±0.8 ∗∗ 72.3 ±1.8 ∗∗ 80.4 ±0.5 ∗∗ 77.6 ± 0.5 ∗∗ 84.6 ±0.2 ∗∗

AdaBoost FNC 77.0 ±0.2 ∗∗ 75.6 ±0.2 ∗∗ 78.3 ±0.3 ∗∗ 77.6 ± 0.2 ∗∗ 81.8 ±0.3 ∗∗

SVM FNC 81.5 ±0.3 ∗∗ 80.0 ±0.8 ∗∗ 83.0 ±0.5 ∗∗ 82.6 ±0.2 ∗∗ 88.4 ±0.2 ∗∗

BrainNetCNN FNC 80.1 ±0.8 ∗∗ 77.2 ±1.5 ∗∗ 82.9 ±1.2 ∗∗ 80.1 ±0.9 ∗∗ 87.7 ±0.5 ∗∗

DNN FNC 80.9 ±0.4 ∗∗ 80.6 ±1.2 ∗∗ 81.3 ±0.7 ∗∗ 81.3 ±0.4 ∗∗ 88.8 ±0.3 ∗∗

C-RNN TCs 82.5 ±0.9 ∗∗ 80.8 ±1.1 ∗∗ 84.2 ±0.9 ∗∗ 83.1 ±0.8 ∗∗ 90.8 ±0.4 ∗∗

C-RNN 

AM TCs 83.5 ±0.5 ∗∗ 81.5 ±0.9 ∗∗ 85.4 ±0.5 ∗∗ 84.0 ±0.5 ∗∗ 91.4 ±0.3 ∗∗

cGCN FNC + TCs 78.3 ±0.6 ∗∗ 77.2 ±1.2 ∗∗ 78.6 ±1.1 ∗∗ 78.4 ±0.8 ∗∗ 81.2 ±0.5 ∗∗

HDLFCA FNC + TCs 85.3 ±0.4 83.4 ±0.6 87.1 ±0.5 85.8 ±0.3 92.4 ±0.2 

Notes: RF: random forest. ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed 

ones, with P value = 0.05/0.01. 

Table 3 

Performance comparison in multi-site pooling classification on HC-ASD using ABIDE sites. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 67.2 ±0.6 ∗∗ 63.7 ±0.5 ∗∗ 70.5 ±0.8 ∗∗ 68.6 ±0.6 ∗∗ 72.8 ±0.4 ∗∗

AdaBoost FNC 64.2 ±0.1 ∗∗ 62.0 ±0.1 ∗∗ 66.2 ±0.2 ∗∗ 65.3 ±0.1 ∗∗ 66.7 ±0.2 ∗∗

SVM FNC 69.5 ±0.1 ∗∗ 66.4 ±0.2 ∗∗ 72.4 ±0.2 ∗∗ 70.7 ±0.2 ∗∗ 76.6 ±0.2 ∗∗

BrainNetCNN FNC 68.5 ±0.6 ∗∗ 63.4 ±2.1 ∗∗ 73.1 ±1.9 ∗∗ 70.5 ±0.8 ∗∗ 75.1 ±0.6 ∗∗

DNN FNC 70.4 ±0.6 ∗∗ 68.2 ±1.4 ∗∗ 72.5 ±0.9 ∗∗ 71.4 ±0.6 ∗∗ 76.5 ±0.6 ∗∗

C-RNN TCs 69.1 ±0.5 ∗∗ 67.6 ±1.2 ∗∗ 70.6 ±0.7 ∗∗ 70.0 ±0.4 ∗∗ 76.1 ±0.4 ∗∗

C-RNN 

AM TCs 69.4 ±0.5 ∗∗ 67.1 ±0.8 ∗∗ 71.5 ±0.7 ∗∗ 70.4 ±0.5 ∗∗ 76.0 ±0.6 ∗∗

cGCN FNC + TCs 67.5 ±0.6 ∗∗ 60.0 ±1.1 ∗∗ 72.2 ±0.7 ∗∗ 69.1 ±0.5 ∗∗ 72.8 ±0.6 ∗∗

HDLFCA FNC + TCs 72.4 ±0.6 70.5 ±0.9 74.2 ±1.0 73.2 ±0.6 79.2 ±0.3 

Notes: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P 

value = 0.05/0.01. 

Fig. 2. The classification results of (A) multi-site pooling classification in in-house SZ datasets, (B) multi-site pooling classification in public ABIDE datasets, (C) multi-site 

pooling classification based on TCs or FNCs extracted by AAL atlas in in-house SZ datasets, and (D) leave-one-site-out classification in HC-SZ datasets. ∗/ ∗∗ denote that the 

proposed HDLFCA method achieves significantly better performance than the listed ones, with P value = 0.05/0.01. 
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Table 4 

Performance comparison in leave-one-site-out classification between HC and SZ. 

Methods Feature ACC SPE SEN F1 AUC 

RF FNC 71.4 ±4.4 ∗∗ 65.1 ±12 ∗∗ 79.1 ±8.1 73.5 ±4.0 ∗ 82.1 ±3.5 ∗∗

AdaBoost FNC 74.8 ±2.5 ∗∗ 74.1 ±6.7 ∗∗ 75.7 ±4.7 75.1 ±3.3 ∗ 82.1 ±2.6 ∗∗

SVM FNC 77.2 ±3.6 ∗ 76.6 ±9.7 ∗∗ 78.5 ±6.5 77.6 ±4.0 85.5 ±4.4 ∗∗

BrainNetCNN FNC 75.8 ±3.8 ∗ 77.5 ±9.5 ∗∗ 75.8 ±6.3 76.5 ±3.2 85.1 ±4.2 ∗∗

DNN FNC 76.8 ±3.1 ∗ 76.2 ±9.0 ∗∗ 77.8 ±5.7 77.8 ±3.7 85.0 ±4.0 ∗∗

C-RNN TCs 77.6 ±1.9 ∗ 77.9 ±8.1 ∗∗ 77.1 ±9.3 77.3 ±4.2 86.5 ±2.4 ∗∗

C-RNN 

AM TCs 78.9 ±2.1 80.0 ±6.5 ∗ 77.9 ±7.8 77.8 ±3.0 87.2 ±2.1 ∗

cGCN FNC + TCs 75.1 ±3.2 ∗ 76.5 ±9.0 ∗∗ 74.4 ±5.6 75.5 ±3.2 ∗ 83.1 ±4.1 ∗∗

HDLFCA FNC + TCs 81.5 ±2.2 87.5 ±6.0 75.1 ±5.8 80.3 ±1.7 90.2 ±2.4 

Note: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance than the listed ones, with P 

value = 0.05/0.01. 
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ated, yielding a symmetric connectivity matrix of 116 ×116. The 

esults were reported in Table S5 and Fig. 2 C. We can draw a sim-

lar conclusion as above. Particularly, HDLFCA outperformed sin- 

le feature-based deep learning models (i.e., DNN, C-RNN and C- 

NN 

AM ) largely, demonstrating the superiority of utilizing comple- 

entary information between FNC and TCs. The attention module 

lso yielded better classification performance (3.6% in ACC) com- 

ared with C-RNN. The HDLFCA based on ICA showed a little bet- 

er performance (85.3%) than fixed AAL (84.9%), this is likely due to 

he ability of ICA to capture variability in the components among 

ubjects. 

.2. Leave-one-site-out classification 

In the leave-one-site-out transfer classification, one imaging site 

as considered as the testing dataset while the other sites were 

sed for training, with 10% of the samples chosen randomly for 

alidation in the HDLFCA. The quantitative results on In-House 

ataset were shown in Table 4 , Table S3 and Fig. 2 C . We can draw

 similar conclusion as that in Section 3.1 . That is, compared with 

he conventional machine learning approaches (i.e., Random For- 

st, AdaBoost and SVM), the proposed HDLFCA largely improved 

he diagnostic performance, suggesting that automatically learn- 

ng high-level fMRI features is beneficial for SZ classification. Be- 

ides, HDLFCA resulted in ACC improvement at 5.7%, 4.7%, 3.9%, 

nd 2.6% respectively compared to single-feature-based deep learn- 

ng models (i.e., BrainNetCNN, DNN, C-RNN and C-RNN 

AM ). This 

emonstrated the superiority of integrating FNC and TCs. In addi- 

ion, from the Table 4 , the embedded attention module still yielded 

etter classification performance, which is consistent with the re- 

ults reported in Section 3.1 . It further indicated that it not only 

dentified the discriminative ICs but also improved the classifica- 

ion performance. The HDLFCA still outperformed cGCN, suggesting 

ur method are more powerful to capture functional connectivity 

nd dynamic brain activity underlying the fMRI data. 

.3. Most HC-SZ discriminative FNC 

The contribution of each FNC was rendered using the LRP al- 

orithm by propagating the correlation layer by layer. The top 50, 

0 and 100 contributing FNC features in the task of SZ diagnosis 

ere presented in the circle diagram ( Fig. 3 A), where the 50 ICs

ere divided into eight functional networks (Fig. S1). The discrim- 

native FNC showed diffuse patterns widely across the entire brain, 

mplying widely impaired brain regions in SZ patients. Despite the 

omplexity, we observed that default-mode networks with connec- 

ions to frontal, and attentional networks shared a high proportion 

n the top 50 contributing connectivity , which are reported to be 

ighly associated with SZ. In Fig. 3 A, the comparison of top 50 and

op 70 contributing FNC revealed a substantial increase in connec- 

ions within visual networks. Connections between frontal and de- 

ault mode networks, frontal and attention networks, and connec- 
7 
ions within visual networks indicated the most contributing influ- 

nce when presenting the top 100 contributing FNC , suggesting 

hat schizophrenia is characterized by impairments in high-level 

ognitive and emotional processing circuits. 

.4. Most discriminative independent components captured by 

ttention module 

The attention module can automatically identify discriminative 

rain regions by learning which regions to focus or suppress. An 

ttention value map with a 50 ×1 ×1 size was obtained for each 

ubject and the mean attention map was generated by averaging 

hem, where a higher value indicates the greater discrimination 

ower of the IC. To obtain more robust imaging markers, we re- 

eated the 10-fold cross-validation experiments 10 times (10 ∗10 

rained models in total) and counted the frequency of the top 

0 discriminative ICs. Fig. 3 B displays the frequency distribution 

istogram, where only ICs with an occurring frequency greater 

han 10% are shown. Fig. 3 B also displays the spatial maps of 

he top 10 discriminative ICs, in which the striatum, cerebellum 

nd anterior cingulate were highlighted as the three most SZ- 

iscriminating ICs by the attention module, suggesting that the 

ttention scheme can effectively extract useful information from 

hole-brain fMRI features. It should be noted that Fig. 3 B presents 

he group-discriminative ICs by averaging the attention maps for 

ach subject, but they are not totally the same across all subjects, 

or example, the same ICs may be emphasized differently, impli- 

ating the potential for individualized localization of brain regions. 

.5. Comparison with dynamic FNC features(dFNC) 

Since dFNC also simultaneously characterized functional depen- 

ency and temporal dynamics of spontaneous BOLD signal, we also 

ompared other deep learning methods using dFNC with our pro- 

osed HDLFCA, which also integrated dynamic FCs and TCs to im- 

rove classification performance. The dFNC was computed by the 

liding window method in steps of 1 TR. We conducted multi- 

le experiments under different settings, where the window length 

aries from the 30s to 70s at intervals of 10s (15-35 TR). A com- 

arison of classification performance was reported in Table 5 . More 

etails are available in the supplementary materials (Table S4 and 

igure S2). 

From Table 5 and Table S4, we can observe that the proposed 

DLFCA outperformed the best performing dFNC-based DL meth- 

ds in all metrics significantly (p < 0.01). For instance, in terms of 

CC, HDLFCA achieved an improvement of 4.6%, 4.9%, 4.5% and 

.5% compared with the best results achieved by LSTM, BiLSTM, 

RU, and C-LSTM respectively, suggesting the superiority of our 

ethod. The lower performance of C-LSTM compared to LSTM 

ay be attributed to the high dimension of the FNC vector (1225, 

ompared to 50 in previous TC-based methods), which largely in- 

reased the parameters of the model. Furthermore, GRU based on 



M. Zhao, W. Yan, N. Luo et al. Medical Image Analysis 78 (2022) 102413 

Fig. 3. The most HC-SZ discriminative features localization. (A) Illustration of the top 50, 70 and 100 contributing functional network connectivities identified by LRP. Connec- 

tions between frontal network and default mode networks, frontal network and attention networks, and connections within visual networks indicate the most contributing 

influence, suggesting that schizophrenia is characterized by impairment in high-level cognitive and emotional processing circuits. (B) The frequency distribution histogram 

of top 10 ICs identified by attention module in 100 experiments. The striatum, cerebellum, anterior cingulate stand out as the top three most discriminating brain regions. 

Putamen-4 represents the ICs showing subcortical regions such as caudate and putamen (striatum). The spatial maps of all 50 ICs were displayed in Figure S1. 

Table 5 

Comparison with alternative classification methods using dynamic FNC on HC-SZ classification. 

Methods Feature ACC SPE SEN F1 AUC 

GRU TCs 76.9 ±0.5 ∗∗ 74.4 ±1.0 ∗∗ 79.3 ±0.7 ∗∗ 77.8 ±0.5 ∗∗ 84.3 ±0.3 ∗∗

LSTM DFNC 80.5 ±0.5 ∗∗ 81.5 ±1.2 ∗∗ 79.6 ±1.0 ∗∗ 80.6 ±0.5 ∗∗ 88.8 ±0.3 ∗∗

BiLSTM DFNC 80.2 ±0.5 ∗∗ 81.1 ±2.0 ∗∗ 79.4 ±1.6 ∗∗ 80.3 ±0.5 ∗∗ 88.7 ±0.4 ∗∗

GRU DFNC 80.6 ±0.9 ∗∗ 80.5 ±1.1 ∗∗ 81.1 ±2.3 ∗∗ 81.1 ±1.2 ∗∗ 88.7 ±0.6 ∗∗

C-LSTM DFNC 79.6 ±0.7 ∗∗ 80.2 ±2.0 ∗∗ 78.9 ±1.2 ∗∗ 79.7 ±0.6 ∗∗ 88.0 ±0.4 ∗∗

HDLFCA FNC + TCs 85. 1 ±0.4 82.8 ±0.8 87.3 ±0.8 85.6 ±0.3 92.1 ±0.2 

Notes: LSTM: Long short-term memory network; BiLSTM: Bidirectional LSTM; GRU: gated recurrent unit; C-L STM: CNN + L STM; ∗/ ∗∗

denote that the proposed HDLFCA method achieves significantly better performance than the listed ones with p = 0.05/0.01. 
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FNC outperformed the same neural network based on TCs signif- 

cantly, which only contains temporal dynamics of brain activity, 

uggesting the effectiveness to integrate brain connectivity and ac- 

ivity of rs-fMRI data. 

.6. Comparison with different DL architectures 

In this section, we compared the proposed C-RNN 

AM with eight 

lternative deep learning models in multi-site pooling experiments 

n In-House datasets. The results were reported in Table 6 . Consid- 
8 
ring the great power in sequence modeling of RNN and the rich 

emporal dynamics of brain activity in time series of BOLD-signal, 

e first directly applied simple RNN and GRU in the same settings 

o classify brain disorders. The results showed the GRU models 

chieved an improvement of 23.6% in ACC, possibly because simple 

NN is difficult to learn long-term dependencies due to the vanish- 

ng and exploding gradient problem ( Bengio et al., 1994 ) and the 

rain activity is characterized by long-range temporal dependence 

uch that signal fluctuations at the present time influence sig- 
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Table 6 

Performance comparison of different DL architectures on SZ classification based on multi-site pooling 

Methods Feature ACC SPE SEN F1 AUC 

S_RNN TCs 53.3 ±0.9 ∗∗ 43.7 ±1.1 ∗∗ 62.5 ±0.9 ∗∗ 57.7 ±0.8 ∗∗ 53.8 ±0.4 ∗∗

GRU TCs 76.9 ±0.5 ∗∗ 74.4 ±1.0 ∗∗ 79.3 ±0.7 ∗∗ 77.8 ±0.5 ∗∗ 84.3 ±0.3 ∗∗

C-MLP TCs 77.1 ± 0.4 ∗∗ 75.7 ±0.8 ∗∗ 78.4 ±0.7 ∗∗ 77.7 ±0.4 ∗∗ 86.7 ±0.3 ∗∗

S_C-RNN TCs 80.5 ±0.5 ∗∗ 79.4 ±1.0 ∗∗ 81.4 ±0.9 ∗∗ 80.9 ±0.5 ∗∗ 88.5 ±0.4 ∗∗

C-RNN TCs 82.5 ±0.9 ∗ 80.8 ±1.1 84.2 ±0.9 ∗ 83.1 ±0.8 ∗ 90.8 ±0.4 

AM_1 TCs 83.4 ±0.5 81.6 ±1.0 85.1 ±0.7 83.9 ±0.5 91.0 ±0.3 

AM_2 TCs 83.4 ±0.4 81.6 ±0.8 85.2 ±1.1 83.9 ±0.4 91.3 ±0.3 

AM_3 TCs 54.8 ±0.6 ∗∗ 54.4 ±0.6 ∗∗ 55.3 ±1.2 ∗∗ 55.5 ±0.8 ∗∗ 57.3 ±0.4 ∗∗

C-RNN 

AM TCs 83.5 ±0.5 81.5 ±0.9 85.4 ±0.5 84.0 ±0.5 91.4 ±0.3 

Notes: ∗/ ∗∗ denote that the proposed HDLFCA method achieves significantly better performance with P value = 0.05/0.01. S_RNN: 

simple RNN. C-MLP: the convolutional layer (CON) has different kernel size as C-RNN and the fully connected layers was followed. 

S_C-RNN: the CON has fixed kernel size and the other architecture was the same as C-RNN. AM_1: the CON in AM was one kernel 

with 4 ∗1 size. AM_2: the CON in AM was replaced by the shared MLP, including three fully connected layers with 50, 10 and 50 

hidden nodes respectively. AM_3: a spatial-temporal attention module based on the proposed attention module (AM) in this work 

to emphasize important time points and regions simultaneously. 
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al dynamics up to several minutes in the future ( Dhamala et al., 

020 ; Guclu and van Gerven, 2017 ). The C-RNN further outper- 

ormed GRU and C-MLP, potentially because the convolutional and 

RU layers were responsible for capturing spatial and temporal 

nformation respectively. The C-RNN with multi-scale convolution 

ernel size outperformed the S_C-RNN with single-scale convolu- 

ion kernel, suggesting that extracting dynamics from a variety of 

imescales is useful in fMRI data. 

Moreover, we designed 4 variants of attention mechanism in- 

egrated into C-RNN models. The architectures were illustrated in 

ig. S5. Specifically, C-RNN 

AM achieved a light increase compared 

ith AM_1, suggesting capturing global relations between brain 

etworks is more effective than local relations. AM_3 performed 

orse than others, showing that the emphasizing important brain 

egions play an essential role in brain disorder classification. 

. Discussion 

In this study, we proposed a novel unified DL framework by in- 

egrating temporal coherence and dynamics effectively to classify 

rain disorders. The classification accuracy of 85.1% and 81.0% were 

chieved in multi-site pooling and leave-one-site-out respectively 

n the task of HC-SZ discrimination. Moreover, when using pub- 

icly accessible ABIDE dataset, ACC of 72.4% was achieved in the 

ulti-site pooling classification of HC vs. ASD, which significantly 

utperformed multiple single feature-based methods. The compet- 

tive result is comparable to, if not better than, the recent stud- 

es on large multi-site fMRI datasets ( Kim et al., 2016 ; Yan et al.,

019 ; Zeng et al., 2018 ). Additionally, LRP and an attention mod- 

le were introduced to identify the most discriminative FNC pat- 

erns and brain regions for SZ. To the best of our knowledge, 

his is the first attempt to integrate identification of discriminative 

rain regions and diagnosis of brain disorders into a unified frame- 

ork based on fMRI data using an attention mechanism-based 

etwork. 

Recently, numerous studies have applied deep learning meth- 

ds for SZ classification and achieved high performance. Compared 

ith previous studies ( Dakka et al., 2017 ; Rozycki et al., 2018 ;

kåtun et al., 2017 ), this work achieved an improvement ( > 5.0%) in

ccuracy on multi-site pooling and leave-one-site-out classification. 

he promising results may derive from the following aspects: First, 

e combined different powerful deep learning models to lever- 

ge complementary information between TCs and FNC, where the 

Cs neglects the functional dependency between brain regions and 

NC discards sequential temporal dynamics. The experimental re- 

ults demonstrated the superiority of combing multiple features. 

econd, the attention module helps to refine and optimize fea- 

ure representation by focusing on more important brain regions 
9 
nstead of the full feature. The experimental results also showed 

he attention module improved classification performance. Third, 

ince the convolutional neural network (CNN) is ‘deep in space’ 

nd RNN is ‘deep in time’, both of them were applied to make 

ull use of the spatial and temporal information underlying the 

pontaneous BOLD signal. Furthermore, to validate the superiority 

f our method, the HDLFCA was compared with other deep learn- 

ng methods based on dFNC, which also takes dynamic fluctuation 

nd temporal coherence into consideration. Our method achieved 

n improvement ( > 4.0%) of average accuracy. Importantly, the goal 

f our method is not only to focus on high performance, but also to 

rovide results that are interpretable and provide insight into the 

rain. The attention module provides an effective way to explore 

nderlying biomarkers in DL methods. It allows for the integration 

f discriminative ICs localization and SZ diagnosis into a unified 

ramework, since the isolated informative region identification may 

ead to suboptimal performance. What’s more, the discriminative 

Cs are not totally the same across all subjects, showing the im- 

ortance of individualized localization of brain regions associated 

ith schizophrenia. 

The results revealed that the attention module highlighted 

rain regions at the locations of the striatum, cerebellum and 

nterior cingulate. The striatum, including putamen and cau- 

ate, has been proved to play a vital role in the pathophysiol- 

gy of schizophrenia ( Yan et al., 2019 ). Compelling evidence has 

hown that the striatum was involved in cognition domains, in- 

luding motor, decision-making, and stimulus-response learning 

 Yager et al., 2015 ). Recently, numerous findings converged on 

vidence for both an increase in striatal dopamine and striatal 

opamine receptors. The dopaminergic hyperfunction in the stria- 

um may contribute to cognitive deficits in SZ ( McCutcheon et al., 

019 ). Moreover, the increase of D2 receptors was found to be pre- 

ictive for treatment response and the popular antipsychotics usu- 

lly blocks the dopamine D2 receptors in the striatum ( Li et al., 

020 ; Sarpal et al., 2016 ). Another highlighted component was the 

erebellum. Many studies showed significant evidence for cere- 

ellar abnormalities in SZ, such as impairment white matter in- 

egrity and blood flow decrease in the cerebellum during cogni- 

ion tasks( Andreasen and Pierson, 2008 ; Kim et al., 2014 ; Luo et al.,

018 ; Yan et al., 2021 ). In addition, the other important component 

dentified by attention module was located in the anterior cingu- 

ate cortex (ACC). Previous studies have demonstrated that a fail- 

re of functional ACC is associated with disturbed cognitive control 

nd working memory deficits in SZ greatly ( Fletcher et al., 1999 ; 

letcher et al., 1996 ) and SZ patients exhibit significantly reduced 

CC activation ( Schultz et al., 2012 ). Overall, the most group dis- 

riminative brain regions can be easily traced back with convincing 

iological interpretability, implying that the attention module em- 
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hasized important ICs effectively and our method showed great 

romise to identify potential imaging biomarkers. 

Although the proposed HDLCD achieved high performance in 

iscriminative ICs localization and psychotic disorder classification, 

everal limitations should be considered in the future. First, C- 

NN 

AM and DNN were trained independently and then their pre- 

ictions were fed into meta-learner to utilize complementary infor- 

ation between TCs and FNC, which makes the later fusion stage 

ouldn’t help refine feature representations in the first stage. A 

romising direction is to integrate the two stages into a purely 

nd-to-end framework to provide complementary guidance for 

ach other. Second, static FNC as the most commonly used func- 

ional connectivity feature, was combined with brain activity (TCs) 

s input features in this work. Nevertheless, it is interesting to in- 

estigate whether combining dynamic connectivity and brain ac- 

ivity can further advance classification performance in the future. 

. Conclusions 

In this work, we proposed HDLFCA, a unified framework that 

akes fully advantage of temporal coherence (FNCs) and time- 

arying fluctuations (TCs) jointly to classify psychiatric disorders 

ased on rs-fMRI data. The method was validated on both In- 

ouse SZ dataset (n = 1100) and the public ABIDE datasets 

n = 1552), with 2.8-8.9% increase compared to 12 popular clas- 

ifiers, suggesting the superiority of combining multiple features. 

o the best of our knowledge, this is the first attempt to introduce 

n attention module into a C-RNN based framework to improve 

he classification performance and automatically identify discrimi- 

ative brain regions. Such a method shows the potential for deep 

earning to provide utility for both predicting and understanding 

he healthy and disordered brain. 
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