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Deep learning (DL) has achieved remarkable success in natural language processing and 
natural image analysis, demonstrating its powerful capabilities. Nevertheless, its 
application in neuroimaging presents some unique challenges, including high 
dimensionality, low signal-to-noise ratio, small sample sizes, and limited ground truth. 
This chapter briefly surveys the deep learning models tailored for neuroimaging, especially 
fMRI. The chapter begins by presenting the advantages of DL in comparison to 
conventional machine learning and the basic DL architectures. Two categories of DL 
architectures, deep discriminative models and deep generative models are introduced 
respectively, with their progress in neuroimaging applications including classification, 
regression, biomarker discovery, subtype discovery, multi-site harmonization, and brain-
wide dynamic modeling. Finally, we discuss priority areas for future studies of DL in 
neuroimaging research. 
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8.1. Why deep learning? 
 

Natural images, as well as other real-world datasets, often span low-dimensional 
manifolds relative to their feature set [1]. Machine learning methods aim to discover 
meaningful patterns, such as feature subsets or feature representations, which can be further 
used for decisions. However, standard machine-learning (SML) algorithms (e.g., linear 
regression) have limited capacity to process natural data in their raw form. Besides, 
constructing a machine learning system required careful engineering and considerable 
domain expertise to design feature extractors for converting the raw features (e.g., pixel 
values of an image) into a suitable internal representation from which the learning 
subsystem, often a classifier, could recognize  patterns[2-5]. 

Compared to SML, deep learning (DL) is a multi-layer representation learning method 
constructed by combining simple yet nonlinear units. Typically trained with error 
backpropagation, DL can approximate very complex mappings. DL has undergone 
significant developments in the past decade, attracting considerable interest from academia, 
industry, and funding agencies. Open source deep learning software frameworks (e.g., 
Tensorflow https://www.tensorflow.org and Pytorch https://pytorch.org) and the explosion 
of available high performance computing infrastructure, especially graphics processing 
units also accelerated this development. With continuous emergence of state-of-the-art 



network architectures and training techniques, neural networks can now be trained deeper 
[6] than ever before, resulting in improved performance. DL has outperformed SML in a 
wide range of applications such as computer vision [6], natural language processing [7], 
and speech recognition [8]. 

In the field of neuroimaging, deep learning has also exhibited its advantage in tasks 
such as classification of neuropsychiatric disorders, biomarker identification, and subtype 
discovery [9-11]. The availability of large imaging datasets, such as the Human 
Connectome Project, Adolescent Brain Cognitive Development Study, and UK Biobank, 
makes training DL models more viable. Neuroimaging samples differ from natural images 
in various ways (as shown in Table 1). For example, in contrast to natural images which 
are collected under natural light, neuroimaging data mostly consist of radiological images. 
Hence the noise distribution of neuroimaging varies depending on the acquisition used (e.g., 
Rician noise in MRI [12], quantum noise in computed tomography [13]). In addition, 
neuroimaging samples often exhibit multiple modalities, high dimensionality, low signal-
to-noise ratio, and small sample sizes compared to natural images. 
 
Table 1. Differences between natural images and neuroimaging samples.  

natural images neuroimaging samples 
data 

acquisition 
Cheap for sample acquisition. 
Datasets can have over a 
million available samples. 

Costly for sample acquisition. 
Datasets usually have fewer than 103 
samples. 

feature 
characteristics 

Features are usually 3D images 
or videos under natural lighting; 
Noise is mostly Gaussian 
distributed. 

Features are usually 3-D structures 
or four-dimensional time series. 
Mostly radiographic images. Noise 
distribution varies. 

data 
annotation 

Clear ground truth. Sample 
annotation is easy and generally 
does not require experts. 

Usually lack clear ground truth. 
Annotation requires expert 
knowledge.  

model training Pre-trained models are usually 
available. 

Few publicly available pre-trained 
models are available.  

model 
interpretation 

The effectiveness of the 
interpretable algorithm can be 
assessed intuitively. 

The effectiveness of the interpretable 
algorithm is difficult to assess 
intuitively. 

 
DL encompasses a collection of multi-layer architectures trained using error 

backpropagation approaches. Designing appropriate DL architectures suitable for the 
feature characteristics and sample size is critical. DL's versatility leads to numerous task-
specific and data-oriented architectures, which can be challenging for beginners to navigate. 
Just as intricate LEGO worlds are constructed from basic elements, various DL 
architectures are built from fundamental modules. To build an intuitive and broad 
understanding of deep learning models, this section outlines the fundamental mechanisms 
of most basic DL models and guides their application in neuroimaging contexts, 
specifically fMRI. Sections 2 and 3 further categorize DL methods into two groups, deep 
discriminative models and deep generative models, for more in-depth comparison. The 
basic modules or models of the DL are as follows: 
1. Multilayer neural networks 

The multilayer fully connected neural networks, also named vanilla neural networks 
(vanilla NN), trained using the gradient backpropagation approach, are the simplest and 



most illustrative DL models for replacing engineered features with trainable multilayers. 
The vanilla NN can transform the input space to make the class of data linearly separable. 
Theoretically, a vanilla NN can approximate any continuous function or mapping on 
compact subsets of Rn, given appropriate weights and activation functions. However, fully 
connected layers in vanilla NN may cause redundancy of trainable parameters and result 
in overfitting, even though the effects can be remediated by L1/L2 regularization and 
Dropout techniques. Vanilla NNs are usually applied for modeling low-dimensional and 
less redundant inputs such as FNC vectors [14]. In addition, due to its flexibility, vanilla 
NN is often used as ’bricks’ for composing more complicated DL architectures (e.g., 
autoencoders, and generative adversarial networks). 

2. Convolutional neural network and graph convolutional network 
The Convolutional Neural Network (CNN) is one of the most widely used DL 

architectures, applied in almost all computer vision tasks. It was designed to process data 
in the form of multiple arrays, such as a color image consisting of three 2D arrays 
containing pixel intensities in the three-color channels. In a classical CNN, two or three 
stages of convolution, non-linearity, and pooling are stacked, followed by more 
convolutional and fully connected layers [15]. The role of convolutional layers is to detect 
local conjunctions of features from the previous layer, while the pooling layers are to merge 
semantically similar features into one. Four key ideas are behind CNN that exploit the 
properties of natural signals: local connections, shared weights, pooling, and deep layers 
[2]. Given its ability to capture spatial information, CNN is well-suited for processing 2D 
images or 3D voxel-based [10] images. Besides pixel or voxel-based images, neuroimaging 
studies often use non-Euclidean graph structures to depict the relationships between nodes， 
such as functional connectivity. Graph Convolutional Network (GCN) is a type of neural 
network architecture designed to capture the graph structures and aggregate node 
information from the neighborhoods in a convolutional manner, with fewer learnable 
parameters. Therefore, GCNs are useful in medical or biochemical applications with graph-
structured data [16]. 

3. Recurrent neural network 
Recurrent neural network (RNN) models the generic dynamic system, 𝑥̇(𝑡) =

	𝐹(𝑥(𝑡), 𝑢(𝑡)) . The state of the dynamic system 𝑥(𝑡)  is updated by a vector-valued 
function F, which is non-linear and potentially complicated, accepts optional input 𝑢(𝑡). 
To implement this, the RNN processes an input sequence one element at a time, 
maintaining its hidden units as a ‘state vector’ that implicitly contains information about 
the history of all the previous elements in the sequence. The long short-term memory 
(LSTM) and gated recurrent unit (GRU) which is more simplified, are two practical 
variants of RNN designed for overcoming the vanishing gradient problem. RNN is suitable 
for modeling sequential inputs, such as fMRI time courses [17]. 

4. Generative adversarial network  
The Generative adversarial network (GAN) was proposed for modeling complex 

distributions to generate realistic samples. A GAN comprises of two adversarial modules: 
a generator G and a discriminator D. The G has no direct access to real data, the only way 
it learns is through its interaction with the D. The D has access to both the synthetic samples 



by G and real samples. Error signal to the D is provided through a simple ground truth of 
knowing whether the data came from the real data or G. The same error signal, via D, can 
be used to optimize G, leading it toward synthesizing data of better quality [18]. GAN is 
not a specific model but a type of model framework. All the previously mentioned DL 
modules, such as vanilla NN, CNN, or RNN, can be used as D or G in GAN. Training 
generative models typically require a large number of samples and advanced model 
architectures to avoid posterior collapse [19], a situation where the model generates 
samples from only a small part of the latent space. Despite the challenge, the ability to 
generate high-quality new samples makes GAN well-suited for solving complex problems 
such as multi-site neuroimaging harmonization[20, 21] and subtype discovery [22]. 

 
5. Encoder-decoder 

Encoder-decoder represents a category of generative framework composed of two core 
components: an encoder, which compresses the input features into a latent space 
representation, and a decoder, which reconstructs the latent space representation back into 
its original input feature space. Variational Autoencoder (VAE) is a typical encoder-
decoder model designed for generative tasks. In VAE, the encoder transforms input data 
into a set of numbers that represent a probability distribution, and the decoder then 
randomly picks points from this distribution to generate diverse outputs, making VAEs 
effective in exploring and representing the underlying low-dimensional manifold of the 
data[23, 24]. Another typical model built on encoder-decoder architecture is the 
Transformer [25], which has revolutionized the natural language processing tasks. The 
Transformer utilizes self-attention mechanisms to capture dependencies between words in 
a sentence, enabling better handling of long-range dependencies. The Transformer has also 
been adapted for image processing. For example, the Vision Transformer (ViT), which 
applies the Transformer to image patches, has achieved state-of-the-art results on various 
imaging benchmarks [26]. 

To accommodate readers from various fields and due to space constraints, detailed 
explanation of DL concepts and their mathematical foundations is omitted. For a 
comprehensive understanding of DL models and the mathematics behind them, readers are 
recommended to consult the referenced DL books [3, 27]. 

8.2. Deep discriminative models: finding the boundaries. 
 

Discriminative models learn to define the boundaries between different classes within 
the data. By learning the conditional probability distribution P(Y|X) of output Y (e.g., class 
labels) given input X (e.g., image features), the discriminative models focus on mapping 
the observed features directly to target classes. Conventional discriminative machine 
learning models, such as logistic regression, support vector machine, and random forests, 
typically operate on manually selected or linear weighted combinations of features. 
However, deep discriminative models, usually constructed by CNN or RNN modules, use 
hierarchical feature learning strategies to capture complex relationships and map the 
features into low-dimensional task-specific manifolds or subspaces where the class 
boundaries are easier to recognize than in the original feature space. By analyzing the low-
dimensional manifold, subtypes can be thereafter obtained. Besides, biomarkers can be 
discovered by post-hoc analysis of the trained models. 



 
8.2.1. Classification and regression 

Classification and regression are two widely studied discriminative tasks. The 
difference between classification and regression tasks is whether the target variable is 
discrete (classification) or continuous (regression). DL models typically use one-hot 
encoding for labeling categories in the output layer, which does not assume a natural order 
between labels, making DL models flexible to multi-class classification tasks. In 
comparison to natural images, which are 2D images, neuroimaging typically exhibits 
higher feature dimensionality (e.g., fMRI consists of sequential volumes each containing 
over 106 voxels), smaller sample sizes (mostly fewer than 103 samples), multiple data 
modalities, and a lack of solid ground truth. Despite no clear guideline for choosing 
between standard machine learning or DL models, large sample sizes generally benefit DL 
models more than SMLs [10]. 

DL models should be adapted to the specific characteristics of the images to be studied. 
Figure 1 summarizes the correspondence between neuroimaging features and DL models. 
Structural neuroimaging data reflect voxel tissue density (e.g., T1-weighted) or structural 
connectivity (e.g., diffusion MRI). One important research topic in structural studies is to 
establish relationships between structural features and symptoms, which can be used for 
clinical diagnosis or treatment response prediction. Given the structural MRI has 3D 
structural information, the 3D CNN model is the most intuitive choice. Abrol et al’s study 
provides evidence that in age and gender classification tasks, with T1w samples over 300, 
the performance of DL has substantial improvement over SMLs [10].  

In comparison to structural MRI, functional MRI has relatively lower spatial resolution, 
but includes temporal information, offering greater flexibility for analysis using DL. Even 
though the DL models have the advantage of extracting high-level feature representation 
from raw data, due to high dimensionality and low signal-noise-ratio in fMRI, efficient 
feature processing is still critical for reducing redundancy before modeling [28]. 
Specifically, fMRI raw data are often dimensionality-reduced using seed-based or data-
driven approaches. The resulting temporal signatures are then used for studying temporal 
dependence such as functional network connectivity (FNC) or dynamic FNC. Different 
from natural images in which each voxel has conjunctions with it neighboring voxels, the 
FNC represents non-Euclidean graphical relationships. To analyze the FNC matrix as 
flattened 1D vector features, the vanilla NN is a viable solution. However, to analyze the 
FNC in its entirety while preserving its graph information, GCN offers a more suitable 
solution [29]. As for dynamic FNC, since it contains sequential information, RNN is more 
suitable for modeling. RNNs have achieved great successes in sequence for brain disorder 
diagnosis, brain decoding, and temporally dynamic functional state translation detection 
[30, 31]. Functional connectivity is often assessed using the Pearson correlation coefficient, 
which assumes a linear relationship between brain regions and oversimplifies their 
interactions. To address this limitation, a 1D convolutional module can be employed to 
automatically learn the non-linear relationship between regions, followed by an RNN to 
capture the temporal information for brain disorder classification [17]. 
 



 
Figure 1. Different MRI features and their corresponding DL models. In the gray panel, 
multiple deep learning modules are listed and linked with their applicable features. 
Abbreviations: MLP: multi-layer perceptron; CNN: convolutional neural network; GCN: 
graph convolutional network; RNN: recurrent neural network. GAN: generative 
adversarial network. 

 
8.2.2. Subtype discovery 

Identifying disease or condition subtypes is crucial for improving our understanding of 
the underlying heterogeneity of neuropsychiatric disorders, personalized medicine, and 
targeted prevention interventions. To identify subtypes using neuroimaging, it is essential 
to detect patterns and correlations in brain structure and function that consistently correlate 
with specific variations in clinical symptoms and treatment response. The empirical 
success of the subtype identification is attributed to the manifold hypothesis: high-
dimensional datasets are typically clustered near low-dimensional manifolds. In the case 
of fMRI analysis, due to its low signal-noise ratio and high dimensionality, confounding 
factors such as age, gender, or site effects may mislead clustering models. To address this, 
methods first need to eliminate irrelevant variables or confounding factors, and then apply 
clustering algorithms (e.g., K-means, hierarchical clustering) to group samples based on 
similarity metrics. When employing standard machine learning for subtype discovery, the 
features should be carefully selected and purified. For example, when identifying major 
depressive disorder subtypes based on functional connectivity, canonical component 
analysis (CCA) could be employed to first map the functional connectivity to a syndrome-
related subspace. The mapped functional connectivity features are then sent to a clustering 
model for further subtype discovery[5]. However, as a linear model, CCA may not 
sufficiently capture the full complexity of the data or include critical information necessary 
for subtype discovery. DL can extract features hierarchically at multiple levels of 
abstraction through its multilayer architecture and backpropagation training strategy. The 
architecture and training technique empower DL with a special characteristic: learning the 
continuous severity of conditions from binary-labeled images through its ability to identify 
intricate patterns and relationships among the samples. For example, as shown in Figure 



2a, the T1w MRI dataset was divided into ten distinct groups based on gender and age 
range. One-hot encoding was utilized to label each sample and avoid any hierarchical 
ranking. A CNN model was then trained to classify the samples. After training, the features 
of the hidden layer for each sample were extracted and visualized using t-distributed 
stochastic neighbor embedding (t-SNE) on a 2D plane. The 2D projection spectrum was 
color-coded by the class labels, revealing separate gender clusters ordered in increasing 
age from one end of the spectrum to the other [10]. Similar results were obtained when 
using DL to discriminate Huntington’s disease based on T1w MRI [32].  

The continuous spectrum discovered by DL represents a low-dimensional manifold 
mapped from the original feature space to a task-specific subspace. For example, if a DL 
model with fMRI time courses as input features is trained to distinguish psychiatric 
disorders from healthy controls, the DL model will map fMRI time courses into a 
psychiatric-specific subspace, suppressing other r potential confounds such as age and 
gender. As shown in Figure 2b, the supervised multiple categorical classification model 
was first trained using a supervised way to map the original fMRI time series to a subspace 
where the differences between psychiatric disorders are more pronounced. The high-level 
representations of the original features are then submitted to a t-SNE clustering model to 
visualize the group differences between disorders, leading to the discovery of  the 
schizoaffective disorder subtypes [33]. 

 

 
Figure 2. Subtype discovery using DL hidden layers. (a) The MRI embeddings inferred 
from a trained DL model used for age and gender classification. Representational patterns 
of the brain were learned. The samples eventually evolve into separate gender clusters 
(red/F/female and blue/M/male clusters), both presenting a gradual spectrum of age 
(traceable light-colored to dark-colored) [10]. (b) The fMRI embeddings inferred from a 
trained DL model used for multi-categorical mental disorder classification. The DL not 
only learned the relationships between mental disorders but also differentiated two 
schizoaffective subtypes. 
 
8.2.3. Biomarker detection 

The aim of identifying biomarkers is to establish relationships between easily 
understood features (e.g., connectivity strength between two brain regions) and target 



variables (e.g., presence of schizophrenia). Biomarker discovery typically relies on the 
interpretation of DL models, a task that is challenging because the DL models use multiple 
non-linear layers to map features into subspaces. This complexity may lead to incorrect 
conclusions or interpretations, potentially limiting the clinical application of DL methods 
[30, 34]. 

For neuroimaging-based machine learning models to be interpretable, they should: (i) 
be comprehensible to humans, (ii) provide useful information about what mental or 
behavioral constructs are represented in particular brain pathways or regions, and (iii) 
demonstrate that they are based on relevant neurobiological signal, not artifacts or 
confounds [35]. The need to enable model interpretation has led to the development of 
various model introspection approaches, which can be broadly categorized into two groups: 
model-sensitive [36] and model-agnostic [37]. These approaches have their relative 
benefits and pitfalls in addressing the requirements of different applications [38].  

The model-sensitive interpretation consists mainly of two types of approaches: 
gradient-based, and layer-wise relevance propagation [39]. Gradient-based methods can be 
computed using automatic differentiation and require no modification of the original DL 
model. Identification of discriminative brain regions in a classification of schizophrenia 
spectrum disorder vs. controls has been performed using a specific gradient-based 
implementation [40]. However, gradient-based methods are often computationally 
expensive, especially when making the integration procedure precise. Layer-wise 
relevance propagation utilizes the layered structure of the neural network and operates 
iteratively to produce an explanation. This analysis is performed at the level of individual 
input samples, allowing for analysis at multiple levels of data granularity, from the level 
of the group down to the level of single subjects, trails, and time points [41].  

Model-agnostic interpretation often involves perturbation analysis, which repeatedly 
tests the effects on a DL’s outputs when occluding patches or features from the inputs. It 
consists mainly of occlusion sensitivity, model-agnostic Explanation (LIME), and Shapley 
Additive exPlanations (SHAP). Specifically, occlusion analysis has been applied to CNN 
and RNN-based models for measuring the contribution of each brain region in 
classification tasks. For instance, a deep convolutional recurrent neural network was first 
trained to identify schizophrenia from healthy controls using fMRI time courses extracted 
from 50 brain regions. To identify the biomarkers related to schizophrenia, the brain 
regions were iteratively covered one by one to record and rank the resulting decrease in the 
model's performance. This process led to the discovery of the most contributing region, the 
stratum, for schizophrenia classification [17]. LIME produces explanations of a DL by 
approximating it locally with a simpler model (e.g., a linear one) around the input sample 
being interpreted and then producing an intuitive summary of the simpler model that can 
be easily interpreted. SHAP computes Shapley values by considering all possible feature 
subsets and their contributions to the prediction. Lombardi et al. utilized SHAP and LIME 
respectively to determine the contribution of each brain morphological descriptor to the 
final predicted age of each subject. SHAP was reported to provide more reliable 
explanations for morphological aging mechanisms [42]. 

8.3. Deep generative models: disentangling the targeted 
variables 
 



“What I cannot create I do not understand.” - Richard Feynman 
 
Deep generative models are neural networks with multiple hidden layers designed to 

model complex, high-dimensional probability distributions. They can be used to generate 
new data samples that follow the same distributions as the training data. In contrast to 
discriminative models, which learn the conditional probability distribution P(Y|X) of the 
target variable Y (e.g., class labels) given the observable variable X (e.g., image features), 
generative models are statistical models of the joint probability distribution P(X, Y) of X 
and Y. When successfully trained, deep generative models can estimate the likelihood of 
each observation and generate new samples from the underlying distribution. Given that 
real-world datasets span low-dimensional manifolds relative to their feature set [1], many 
large-scale generative learning models are designed to map between complex datasets and 
simplified latent representations. Training generative models are usually computationally 
expensive but have significant advantages. The development of deep generative models 
has become one of the most researched fields in artificial intelligence in recent years, 
Recent advances in deep generative models have led to the production of photorealistic 
artwork (e.g., DALL·E), precise protein structures (e.g., AlphaFold), and natural-sounding 
conversational text (e.g., ChatGPT) [19, 43]. 

Why are deep generative models important for neuroimaging? The complexity of the 
human brain arises from numerous genetic and environmental interactions. Brain images 
are entangled with confounds including demographic variables (e.g., age, gender), and 
scanner effects (e.g., magnetic strength, scanner manufacture). The effects of the 
confounds are often non-linear, despite decades of neuroimaging studies using linear 
assumptions for modeling them. Deep generative models have the capability to model the 
joint probability distribution P(X, Y), which enables them to derive the conditional 
probability P(X|Y) with ease. For instance, given the text label 'an apple', the system can 
generate a corresponding image. A unique feature of deep generative models is variable 
disentanglement, which enables the extraction of specific attributes, such as site effects. 
This capability provides a powerful tool for isolating and examining individual factors, 
making it essential for tasks such as multi-site data harmonization or decoding brain 
activity [44]. The literatures [18, 19, 43, 45] extensively discussed primary deep generative 
models, including GAN, and encoder-decoder models, represented by VAE. GANs 
introduce a dynamic competition between two neural networks: a generator that produces 
synthetic data and a discriminator that evaluates the authenticity of both real and synthetic 
data, resulting in the creation of highly realistic samples. This adversarial process has 
shown significant success in various domains, such as image and voice generation. VAEs, 
on the other hand, are notable for their ability to create new samples that closely resemble 
the training data by using spherical Gaussian distributions in latent space. VAE guarantees 
that the acquired representations are proficiently encoded in terms of latent variables, 
revealing the complex underlying factors of the dataset. In this section, three applications 
of deep generative models in neuroimaging are introduced: subtype discovery, multi-site 
harmonization, and brain-wide dynamic modeling. 
 
8.3.1. Subtype discovery 

Brain development results from dynamic interactions between genes and environment, 
and brain imaging datasets are further complicated by factors such as scanner effects, age, 



and gender. Variables unrelated to diseases may mislead clustering algorithms. Therefore, 
subtype discovery algorithms must be designed to avoid the influence of these disease-
irrelevant variables. The previous section discussed discriminative model approaches that 
involves mapping the original features to subspaces related to the target variables, thereby 
identifying a low-dimensional disease-specific manifold. Clustering algorithms are then 
used for subtype discovery, significantly reducing the impact of irrelevant variables. 
However, discriminative models are not able to disentangle disease-relevant variables from 
irrelevant ones. To address this limitation, we mainly introduce two deep generative 
models, contrastive VAE (CVAE) [24] and SeMI-supervised cLustEring-Generative 
Adversarial Network (Smile-GAN) [22], for identifying subtypes based on structural MRI. 

CVAE is an autoencoder model designed specifically for extracting latent variables for 
clustering purposes [24]. As shown in Fig. 3a, CVAE takes input samples from two 
different populations (healthy controls and mental disorders) and isolate variation specific 
to one population from variation common to both. This enables the CVAE to separate 
‘disorder-specific’ neuroanatomical variation from variation shared by both mental 
disorder and healthy control, representing each as a distinct set of latent features. In 
comparison to conventional disentangling approaches and architectures, the CVAE has 
three significant advantages. First, the CVAE allows for modeling nonlinear relationships 
between inputs and latent features, providing more flexibility compared to linear methods 
such as contrastive PCA. Second, CVAE can separate shared and specific features in their 
latent space, even when the features are entangled in the inputs, setting them apart from 
some multimodal methods that rely on inputs where different modalities are already 
separated. Third, CVAE includes a decoder, enabling the implementation of the "synthetic 
twin" analysis. This decoder allows for generating counterfactual brains from the latent 
features, which can then be used to identify interpretable brain regions affected by 
structural variation within the patients. 
Different from CVAE which separates generative and clustering stages, Smile-GAN 
integrates a generative module with a clustering module, addressing the need for 
information flow between these two components. As shown in Fig 3b, Smile-GAN uses 
GAN to learn the non-linear mappings from normal control to patients, allowing for a 
disentangle of disease-relevant and disease-irrelevant variables. Additionally, a clustering 
module is integrated into the training framework, enabling the model to group similar 
data points based on the learned features. This simultaneous training of the generator, 
discriminator, and clustering components ensures that the model not only generates 
realistic data but also effectively clusters it, enriching the overall analysis process [22].

 
 
Figure3. (a) Architecture of the CVAE model. CVAE takes input samples from two 
distinct populations and isolates variation specific to one population from variation 



common to both. Hence, CVAEs disentangle ‘autism-specific’ neuroanatomical variation 
from variation ‘shared’ by both autism and typical control participants, representing each 
as a distinct set of latent features. (b) A conceptual overview of Smile-GAN. Blue lines 
represent non-disease-related variations observed in both normal control and patient groups. 
Red regions represent disease effects that only exist in patient groups. Smile-GAN 
discovers disease-specific neuroanatomical patterns by learning non-linear transformations 
from normal controls to various diseases. 
 
8.3.2. Multi-site datasets harmonization 

Multi-site neuroimaging collaboration is a viable way to overcome small sample bias 
by aggregating samples from multiple sites or hospitals. However, samples from different 
sites are typically acquired using various scanners, acquisition protocols, and software 
versions. This variability partly explains the significant degradation of pooled 
classification performance as sample size increases. In addition, DL models have the ability 
to detect and leverage site-specific information for classification purposes [46], which may 
result in classifiers that are not generalizable or robust. Therefore, proper harmonization of 
site and scanner effects is critical to mitigate these differences for downstream analysis 
[47]. 

The key to solving the multi-site harmonization model is to accurately estimate the 
distribution of site-specific variables or to disentangle the site-specific variables from other 
image features. GANs are often employed to address multi-site harmonization challenges 
[20, 21, 48]. For instance, to harmonize T1w MRI samples collected from six sites, a GAN 
variant called StarGAN was employed. The StarGAN consists of a style encoder, a content 
encoder, a generator, and a discriminator. Both the content encoder and the generator are 
CNNs that map a single axial slice from a T1w scan to low-dimensional representations. 
Specifically, the style encoder learns a mapping of slices to eight-dimensional vectors 
representing the site-based variation of that slice. The content encoder learns a mapping of 
slices to a lower-dimensional set of convolutional filters representing the site-irrelevant 
information of the slice. The generator then combines both the style and content encodings 
to produce a harmonized image that maintains the respective style and content of the input 
encodings. This process generates a harmonized scan that matches the site-based variation 
of a reference scan while preserving the original anatomical information. The discriminator 
network is used to make the generated images more realistic [21]. 

It is worth noting that in the process of harmonizing site-specific variables, information 
relevant to downstream tasks may also be lost. Therefore, it is essential to consider the 
requirements of downstream tasks when designing DL multi-site harmonization methods 
[48]. 
 
8.3.3. Brain-wide dynamic modeling 

A major tenet of theoretical neuroscience is that cognitive and behavioral processes are 
ultimately implemented through neural system dynamics. In many brain regions, the 
activity of a large population of neurons is often well described by low-dimensional 
dynamics. Advanced neural technologies allow for recording from many thousands of 
neurons in multiple interacting brain areas, enabling the manipulation and modeling of 
brain-wide neural population dynamics. Recovering these dynamics on single trials is 
essential for illuminating the relationship between neural population activity and behavior, 



and for advancing therapeutic neurotechnology such as closed-loop deep brain stimulation 
and brain-machine interfaces. By combining deep learning with dynamic systems, the 
performance of neural systems can be significantly improved. Here, two instances are 
primarily introduced: Latent Factor Analysis via Dynamical Systems (LFADS)[49] which 
models neural spiking, and piecewise-linear recurrent neural network (PLRNN) [50] which 
models fMRI. 

Dynamic system modeling aims to model the following generic dynamic system: 
𝑥̇(𝑡) = F(x(𝑡), u(𝑡)) 

The state of the dynamical system, x(t), is updated by the vector-valued function F, 
which is potentially complex, accepts option input u(t), and is initialized by an initial 
condition x(0). Traditional machine learning approaches for modeling neural population 
dynamics, such as linear dynamical systems (LDS), typically make simplifying 
assumptions by modeling the underlying population dynamics as independent, linear or 
switched linear. However, uncovering relevant transient patterns in brain function is 
challenging due to the lack of computational tools that can effectively capture nonlinear 
dynamics from high-dimensional data. Recent studies show that DL models, especially 
those based on RNN, have the potential to capture whole-brain dynamic information and 
exploit time-varying functional connectivity state profiles, advancing our understanding of 
brain function and diseases [51, 52]. 

The LFADS model is a deep generative model designed to infer underlying dynamics 
from single-trial neural spiking data. It operates on the assumption that observed neural 
activity arises from a lower-dimensional dynamical system characterized by latent factors. 
As shown in Figure 4a, LFADS employs a sequential autoencoder architecture consisting 
of a variational autoencoder extended to sequences. This architecture includes an encoder 
(to compress observed data into latent representations), a generator (to generate dynamics 
and inferred firing rates from these representations), and optionally a controller (to model 
external inputs to the neural population). Through this approach, LFADS is able to de-
noise spiking activity, predict behavioral variables, and extract precise estimates of single-
trial neural dynamics, thereby providing insight into the neural computation underlying 
observed behaviors [49]. 

Deep generative models can also advance the identification of the computational 
dynamics underlying task processing [45]. Koppe et al [50] proposed an advanced state 
space model (SSM) based on generative piecewise-linear recurrent neural networks 
(PLRNNs) for analyzing neuroimaging data, specifically fMRI. The PLRNN forces the 
latent model to capture the ‘true’ underlying dynamics rather than just fitting (or predicting) 
the observations. As shown in Figures 4b and 4c, the approach demonstrated the ability to 
uncover task-related nonlinear structures that linear models fail to capture, providing a 
novel step towards analyzing non-linear dynamics in neuroscientific research and clinical 



assessment. [50]

 
Figure 4. (a) schematic overview of the LFADS architecture[49]. (b) Example time 
series from an LDS-SSM and a PLRNN-SSM trained on the van der Pol (vdP) system. 
Example time graph (left) and state space (right) for a trajectory generated by an LDS-
SSM (red) trained on the vdP system (true vdP trajectories are in green). Trajectories 
from an LDS will almost inevitably decay toward a fixed point over time (or diverge). (c) 
Trajectories generated by a trained PLRNN-SSM, in contrast, closely follow the vdP-
system’s original limit cycle [50]. 

8. 4. Further study 
 
8.4.1. The balance between task complexity and model complexity 

DL models are growing in number and complexity as the field of neuroimaging 
advances. They are now being applied to different levels of features and a range of tasks in 
neuroimaging. It is commonly observed that the use of more primitive features and the 
performance of more complex tasks require increasingly sophisticated algorithms and 
correspondingly larger training datasets. For example, DL for gender classification based 
on functional connectivity features is generally simpler and requires less data than 3D 
CNN-LSTM algorithms trained on raw fMRI data for identifying dynamic attractors. 
Although some auto-differentiation platforms (e.g., Pytorch, TensorFlow) have greatly 
simplified model design procedures, various hyper-parameters such as width, depth, loss 
function, and optimizers are typically decided based on experience. 

This empirical knowledge remains unquantified, presenting a gap between practical 
and theoretical understanding. In addition, different tasks require varying levels of 
performance from these models. For example, a DL model designed for cancer screening 
usually requires better performance, especially sensitivity, than a DL model designed for 
influenza screening. In the future, there is a need for a theoretical framework capable of 
determining the minimal complexity of models based on performance requirements and 
training samples. Such a framework would also need to establish the lower bound for the 
amount of training data required. This framework would not only streamline the 
development of efficient models tailored to specific neuroimaging tasks but would also 



provide a quantitative basis for the empirical insights gained from the use of DL in 
neuroimaging. 
 
8.4.2. Large language model (LLM) and biological mechanisms 

Large Language Models (LLMs), such as ChatGPT, built on large neural networks and 
trained on extensive corpora of text, have demonstrated remarkable text processing 
capabilities and are now the best-performing model for automatic translation, 
summarization, dialogue, and even complex reasoning tasks. Despite their success, the 
performance of LLMs often relies on statistical patterns and associations learned from the 
training data, rather than an understanding of underlying principles or meanings. The 
working mechanisms of LLMs, particularly how they manage and represent information 
and how similar they are to human cognition, represent a significant research challenge. 
By conducting comparative studies between LLMs and neuroimaging, we can effectively 
bridge biological mechanisms with algorithms. This comparison between computational 
models and the biological brain allows for a deeper understanding of the underlying 
computations that drive brain function [53-55]. Aligning LLMs with biological 
mechanisms may also allow the development of interpretable algorithms for biological data 
that go beyond the ‘black box’ models of current DL, leading to superior explanatory power 
in medical and health-related research. 
 
8.4.3. Neuromodulatory systems and multi-level analysis 

To achieve a comprehensive understanding of brain dynamics across different levels, 
from molecular to behavioral, it is crucial to establish multilayered computational models 
[56, 57]. The study of neuromodulatory systems has shown their potential to bridge the gap 
between structure and function [58]. By connecting different levels of description, 
computational models can parametrically map classical neuromodulatory processes onto 
system-level models of neural activity, enriching our understanding beyond what can be 
achieved through structure or functional connectivity alone. Moreover, the success of DL 
and the similarities in their structural organization to the cortex suggest that humans and 
deep machines may share fundamental computational principles [57]. Incorporating DL 
models can future improve the performance of current computational models. This 
interdisciplinary approach not only paves the way for DL models that more accurately 
mimic the brain's inherent mechanisms but also enhances our ability to model and 
understand the intricate dynamics of neuromodulation in shaping neural and cognitive 
functions. 
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