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ABSTRACT

BACKGROUND: Accurate psychiatric risk assessment requires biomarkers that are both stable and adaptable to
development. Functional network connectivity (FNC), which steadily reconfigures over time, potentially contains
abundant information to assess psychiatric risks. However, the absence of suitable analytical methodologies has
constrained this area of investigation.

METHODS: We investigated the brainwide risk score (BRS), a novel FNC-based metric that contrasts the relative
distances of an individual’s FNC to that of psychiatric disorders versus healthy control references. To generate
group-level disorder and healthy control references, we utilized a large brain imaging dataset containing 5231 total
individuals diagnosed with schizophrenia, autism spectrum disorder, major depressive disorder, and bipolar
disorder and their corresponding healthy control individuals. The BRS metric was employed to assess the
psychiatric risk in 2 new datasets: Adolescent Brain Cognitive Development (ABCD) Study (n = 8191) and Human
Connectome Project Early Psychosis (n = 170).

RESULTS: The BRS revealed a clear, reproducible gradient of FNC patterns from low to high risk for each psychiatric
disorder in unaffected adolescents. We found that low-risk ABCD Study adolescent FNC patterns for each disorder
were strongly present in over 25% of the ABCD Study participants and homogeneous, whereas high-risk patterns of
each psychiatric disorder were strongly present in about 1% of ABCD Study participants and heterogeneous. The
BRS also showed its effectiveness in predicting psychosis scores and distinguishing individuals with early
psychosis from healthy control individuals.

CONCLUSIONS: The BRS could be a new image-based tool for assessing psychiatric vulnerability over time and in
unaffected individuals, and it could also serve as a potential biomarker, facilitating early screening and monitoring
interventions.

https://doi.org/10.1016/j.biopsych.2023.09.017

Mental disorders are major contributors to morbidity and
mortality, with an estimated 1 in 5 adults in the United States
affected (1). Screening high-risk adolescents is an important
step toward early-stage intervention. Methods have been
developed for decades to quantify the risk of multiple psychi-
atric disorders. Structured interview-based criteria for clinical
high-risk states, such as the Scale of Psychosis-Risk Syn-
dromes (2), are useful for diagnosing prodromal psychosis. The
rate of developing psychosis within 2 years of being identified
as clinical high risk was estimated at between 20% and 35% in
a 2011 meta-analysis (3). Nevertheless, the accuracy of the
results is influenced by factors such as the doctor’s expertise,
language, and culture. In addition, the interview-based criteria
are not able to delineate the fundamental mechanisms of

dysfunction. Apart from interview-based criteria, polygenic risk
score (PRS) (4) is another widely used metric for psychiatric risk
assessment. The PRS is derived from genome-wide associa-
tion studies’ summary statistics, which aggregate and quantify
the effects of numerous common genome variants (5). How-
ever, these genetic factors contribute only to a small part of the
risk, and PRSs capture only part of the genetic contribution (6),
causing few reproducible genetic psychiatric risk factors to be
identified through linkage analysis, candidate gene analysis, or
by genome-wide association studies (7). In addition, the PRS is
a static metric that does not capture the changes in brain
developmental trajectories that are unique to a child’s life cir-
cumstances including those that might contribute to psychiatric
disorders [i.e., prenatal cannabis exposure (8)].

SEE COMMENTARY ON PAGE e17

ISSN: 0006-3223

© 2023 Society of Biological Psychiatry. 699

Biological Psychiatry April 1, 2024; 95:699-708 www.sobp.org/journal


https://doi.org/10.1016/j.biopsych.2023.09.017
http://www.sobp.org/journal

An ideal metric for longitudinally assessing psychiatric risk
in adolescents should be: 1) reproducible and adaptable to
environmental factors, 2) related to the underlying mechanisms
of psychiatric disorders, 3) consistent with clinical symptoms,
and 4) able to distinguish patients with mental disorders from
healthy control participants.

In contrast to the Scale of Psychosis-Risk Syndromes and
PRSs, the functional connectivity (or its network analog,
functional network connectivity [FNC]) profile from resting
functional magnetic resonance imaging (fMRI) data is highly
unique but also exhibits temporal variability (9-12), making it a
viable option for evaluating the developmental trajectory in
adolescents. According to a previous study that utilized data
from the Adolescent Brain Cognitive Development (ABCD)
Study, the FNC profile was able to identify a particular child
from a large group with high accuracy (>90%) (10). FNC also
demonstrates excellent capability in identifying mental disor-
ders (13) and predicting clinical symptoms (14). Nevertheless,
the application of FNC for assessing psychiatric risk faces
several challenges, including small sample sizes and incom-
patible image-processing pipelines (15,16). In addition, there is
evidence indicating that resting-state networks are not
confined to specific regions but rather encompass large-scale
networks that span the entire brain (17,18). To address the
above issues, we propose the use of large clinical cohorts and
a standard fMRI processing pipeline (17) that combines a data-
driven decomposition adapted to individual participants with a
spatial constraint to ensure interparticipant correspondence
between networks.

Here, leveraging large population neuroimaging datasets
and a standardized image-processing pipeline, we investi-
gated a novel functional imaging-based psychiatric risk
assessment system, brainwide risk score (BRS), which con-
trasts the relative distances of an individual’s FNC to that of
psychiatric disorders versus healthy control references. To
accomplish this, we planned to preprocess all fMRIs using
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NeuroMark (17), a fully automated independent component
analysis (ICA) pipeline that is robust even when utilizing short
data collection times (19). Having derived BRS in the clinical
population, we then planned to use it for assessing signatures
of psychiatric risk (i.e., functional brain patterns showing more
similarity to a chronic patient cohort vs. control groups) in the
ABCD Study adolescents. Considering the fact that the images
were obtained when the ABCD Study adolescents were be-
tween 9 and 13 years of age, too early for the typical emer-
gence of schizophrenia (SCZ) or bipolar disorder (BPD), we
also planned to utilize the Human Connectome Project Early
Psychosis (HCP-EP) dataset to evaluate the robustness, pre-
dictability, and classification performance of the BRS.

METHODS AND MATERIALS

The workflow of the study is illustrated in Figure 1. We utilized
fMRI samples from 7 clinical studies (n = 5231) of individuals
diagnosed with SCZ, autism spectrum disorder (ASD), major
depressive disorder (MDD), BPD, and of healthy control par-
ticipants. fMRIs were analyzed with NeuroMark, a spatially
constrained ICA pipeline, to extract FNC features. We then
obtained references for a given disorder and its corresponding
healthy control group by averaging the FNCs of patients and
control participants within each clinical group and computing
the difference. Subsequently, the references from each clinical
group were compared with the FNC of each individual from the
ABCD or the HCP-EP dataset. Specifically, for each individual
in the ABCD or HCP-EP dataset, the BRS was determined by
calculating the Euclidean distance between their FNC to dis-
order reference and to the corresponding control reference. A
more detailed calculation can be found in the BRS Calculation
section. Further analysis, such as FNC gradient visualization,
prodromal score prediction, and early psychosis classification
were conducted based on the obtained BRS.
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Table 1. Baseline Demographic Information of Multiple Psychiatric Datasets

Disorders Categories Age, Years, Mean = SD Gender, Female/Male, n Dataset (Sample Size)
SCZ, n = 2615 Patients, n = 1302 35.8 £ 12.6 487/815 B-SNIP (429), COBRE (68), FBIRN (151),
MPRC (147), 754-sample SCZ (507)
Control Participants, n = 1313 342 £ 117 679/634 B-SNIP (576), COBRE (89), FBIRN (160),
MPRC (241), 754-sample SCZ (247)
ASD, n = 1735 Patients, n = 796 16.7 = 9.2 110/686 ABIDE (796)
Control Participants, n = 939 16.2 = 8.6 229/710 ABIDE (939)
MDD, n = 585 Patients, n = 278 334 +11.2 169/109 585-sample MDD (278)
Control Participants, n = 307 31.3 = 104 191/116 585-sample MDD (307)
BPD, n = 872 Patients, n = 296 35.4 £ 121 192/104 B-SNIP (296)
Control Participants, n = 576 36.2 = 125 341/235 B-SNIP (576)

ABIDE, Autism Brain Imaging Data Exchange; ASD, autism spectrum disorder; BPD, bipolar disorder; B-SNIP, Bipolar & Schizophrenia Network on Intermediate
Phenotypes; COBRE, Center for Biomedical Research Excellence; FBIRN, Function Biomedical Informatics Research Network; MDD, major depressive disorder;

MPRC, Maryland Psychiatric Research Center; SCZ, schizophrenia.

Participants and Data Acquisition

Multiple Psychiatric Datasets for Building Refer-
ences. Table 1 shows the demographic information for the
samples that were used for constructing references obtained
from 7 clinical studies including the Bipolar & Schizophrenia
Network on Intermediate Phenotypes (B-SNIP) (20), Center for
Biomedical Research Excellence (COBRE) (21), Function
Biomedical Informatics Research Network (FBIRN) (22), Mary-
land Psychiatric Research Center (MPRC) (23), a 754-sample
SCZ dataset (13), Autism Brain Imaging Data Exchange
(ABIDE) (24), and a 585-sample MDD dataset (25). Additional
information regarding the demographics of the datasets can be
found in Tables S1-S7. Participant inclusion criteria required all
participants with head motion =3° and =3 mm and with
functional data providing near full brain successful normaliza-
tion (by comparing the individual mask with the group mask,
see the Supplement). This criterion yielded a total of 5231
participants, with SCZ (n = 2615, comprising 1302 patients and
1313 control participants), ASD (n = 1735, 796 patients and 939
control participants), MDD (n = 585, 278 patients and 307
control participants), and BPD (n = 872, 296 patients and 576
control participants) datasets. All clinical participants were
diagnosed based on conventional DSM-derived diagnosing
criteria.

ABCD and HCP-EP for Assessment. The ABCD Study is
the most extensive longitudinal and observational study con-
ducted to date, exploring brain development and child health
starting at age 9 to 10 and initiated in 2016 in 21 sites across
the United States (26). The ABCD Study database includes
around 11,800 participants, with multiple scans obtained from
different longitudinal sessions. This dataset contains a
comprehensive range of metrics related to mental health,
cognition, and other health-related backgrounds (27) that have
allowed researchers to explore the relationship between
adolescent behaviors and brain functions and how these are
influenced by socioeconomic and genetic factors (28). The
demographic characteristics of the ABCD Study samples that
were used in this study are shown in Table S8.

As part of the Human Connectome Project, the HCP-EP
imaged individuals within the first 5 years of the emergence
of psychotic symptoms (early-phase psychosis). It includes

183 participants with confirmed psychiatric diagnoses as well
as healthy individuals. The affective group encompassed in-
dividuals diagnosed with MDD with psychosis (single or
recurrent episodes) or BPD with psychosis (including most
recent episode depressed and manic types). The nonaffective
group consisted of individuals diagnosed with SCZ, schizo-
phreniform, schizoaffective, psychosis not otherwise specified,
delusional disorder, or brief psychotic disorder. Individuals in
the control group did not meet the diagnostic criteria for any
mental disorder. The demographic characteristics of the HCP-
EP samples used in this study are shown in Table S9.

Data Preprocessing

NeuroMark Pipeline. To capture reliable intrinsic connec-
tivity networks and their corresponding time courses for each
fMRI scan, NeuroMark (17) was applied to the ABCD Study
data using the NeuroMark_fMRI_1.0 templates (available in the
group ICA of fMRI toolbox at https://trendscenter.org/
software/gift/ or https://trendscenter.org/data/). In contrast to
the region of interest-based approaches that typically assume
fixed brain regions across participants, NeuroMark can identify
brain networks that are comparable across participants while
adapting single-participant variability with the networks. Pre-
vious studies have demonstrated the efficacy of NeuroMark in
identifying a variety of brain markers and abnormalities in
different populations (29,30) and have also shown consistent
sensitivity to group difference patterns and preservation of
individual classification accuracy for a relatively short period
(19). Further information about the NeuroMark network par-
cellation can be found in Figure S1 and Table S10.

FNC Postprocessing. Four additional postprocessing
steps were performed to further reduce artifacts/noise in the
time courses: 1) detrending to eliminate linear, quadratic, and
cubic trends, 2) despiking temporal outliers, 3) low-pass
filtering with a cutoff frequency of 0.15 Hz, and 4) regressing
out 6 head motion parameters and their temporal derivatives.
Pearson correlation coefficients between postprocessed time
courses were calculated to obtain the FNCs for each scan. To
mitigate and remove confounds when building the specific
psychiatric disorder FNC references, the biological (i.e., age,
gender) and technical (i.e., scanner, sites) covariates were
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regressed out for each disorder. Detailed data processing
procedures can be found in the Supplement.

BRS Calculation

To obtain the averaged group references, FNCs of the patients
and the corresponding healthy control participants in the same
project were averaged for each psychiatric disorder. For the
FNC of iy testing participant T; from the ABCD or HCP-EP
dataset, we calculated the Euclidean distance d”*™ be-
tween T; and patient reference (Rpasiens) and the Euclidean
distance d,°°””°’ between T; and control reference (Rcontrol):

2 control n ) j
el = Zj:‘l ) Tr _R’control

d’patient _ Z;; HT/I R

patient

)

where j represents the index of the FNC feature, and n is the
total number of FNC features (n = 1378).

The distance between a testing individual with the patient
reference (a”%"*™) and with the control reference (df°"") was

further calculated to quantify the BRS:
BRS = dicontrol_ d;::atient (2)

As defined, a smaller BRS implies a lower risk of developing
a psychiatric disorder.

RESULTS

BRS Reveals a Reproducible Gradient of FNC
Dissociation From Low-Risk to High-Risk
Adolescents

As shown in Figure 2A, the FNC references of mental disorders
are in the lower triangle, and healthy control participants are in
the upper triangle. The FNC of ABCD Study samples used in
this study was the same as our previous study (10), which
revealed that the accuracy of identifying an individual’s FNC at
the second year from the FNC collected at baseline was over
90%. The FNC quartiles, shown in Figure 2B, demonstrate the
trajectories from low-risk to high-risk samples for each mental
disorder in ABCD Study adolescents. Specifically, all ABCD
Study samples were sorted in ascending order of their BRS,
with the lowest-risk samples averaged to be the first FNC in
each column and the highest-risk samples averaged to be the
fourth FNC. Similar results were replicated on the second-year
follow-up ABCD Study samples, as shown in Figure S2. Head
motion showed no significant effects on BRS (Figure S3).

As shown in Figure 2C, 2 groups of networks, a sensori-
motor (SM) hub and a cerebellar (CB) hub, were identified that
indicate the psychiatric risk in a healthy population. We found
that low-risk ABCD Study adolescents were alike regardless of
the reference used, but high-risk adolescents differentiated
toward each psychiatric disorder. Specifically, for the SM hub,
negative connectivity within the SM and between SM and vi-
sual and positive connectivity between SM and subcortical
(SC) networks were related to increased psychiatric risk for all
mental disorders. For the CB hub, negative connectivity be-
tween CB and SC and between CB and cognitive control (CC)
networks and positive connectivity between CB and visual
networks were related to increased risk of SCZ and autism.
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Autism also showed a positive connection between CC and
SM when risk increased. In contrast, high-risk MDD did not
exhibit an obvious CB hub-related connectivity change. High-
risk BPD did not show an obvious change between CB and
visual networks.

The high similarity and strongly present FNC patterns
showed in more than one-quarter of ABCD Study participants,
indicating a presumed protective pattern, whereas the patient-
like patterns were not strongly visible until we “zoomed in” to
the upper 1% of the high-risk participants (Figure 2C).
Considering that the global age-standardized prevalence of
most mental disorders is <1% (31), to quantify the divergence
of participants at different psychiatric risk levels, we used
cross-correlation among 4 psychiatric-risk groups within the
1% lowest-risk and 1% highest-risk ABCD Study participants
(Note: the cross-correlation among all ABCD Study partici-
pants is shown in Figure S4, and the demographic information
of 1% lowest-risk and 1% highest-risk ABCD Study partici-
pants is shown in Table S11). As shown in Figure 3A, the 1% of
lowest-risk adolescents showed high similarity (r = 1), and the
1% of highest-risk showed low similarity. We also quantified
the averaged correlation distance (1 minus averaged correla-
tion coefficients) at 2 risk levels. The averaged distance among
disorders at the low risk level (mean + SD: 0.05 + 0.02) was
much smaller than that at the high-risk level (mean = SD: 0.79
+ 0.36), demonstrating increased divergence among higher-
risk groups relative to the control groups.

Comorbidity of Psychiatric Disorders Measured
Using BRS

Figure 3A shows an increased divergence among higher-risk
groups relative to control groups. To further investigate how
the BRS could facilitate the study of psychiatric comorbidity,
we calculated the overlaps of high-risk ABCD samples for each
mental disorder. Figure 3B shows a Venn diagram of the top
25% risk ABCD samples for each psychiatric disorder. Overlap
between individuals with high-risk SCZ and ASD BRS (29.6%)
and SCZ and BPD BRS (28.9%) was greater than pairwise
overlap with other disorders (SCZ and MDD: 21.6%, ASD and
MDD: 14.9%, ASD and BPD: 21.3%, MDD and BPD: 19.3%).
SCZ also showed the least number of individuals with no
shared high-risk categories (3.1%); MDD showed the most
uniqueness (18.6%), followed by ASD (12.3%) and BPD
(10.3%), consistent with the high prevalence of comorbidity of
SCZ with other mental disorders (32). In addition, 7.7% of in-
dividuals showed shared overlap among all 4 disorders. As
shown in Figure 3C, all ABCD Study participants are visualized
on a 2-dimensional plane. The top 1% risk samples of each
psychiatric disorder were selected and highlighted based on
their BRSs. Results show that high-risk SCZ (red dots) and
high-risk ASD (yellow dots) have a greater degree of overlap
than the other disorders (blue and green dots).

Correlation Between BRS and Clinical Symptoms

Skewness is a metric that evaluates the asymmetry of a
random variable’s probability distribution relative to its mean.
For the BRS histogram of each disorder, a negative skew in-
dicates that the tail is situated on the left side of the distribu-
tion, which is indicative of control references, whereas a
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Figure 2. (A) Functional network connectivity (FNC) references generated for each psychiatric disorder. Each figure displays the FNC of a psychiatric
disorder in the lower triangle and the FNC of the control group in the upper triangle. (B) The FNC of Adolescent Brain Cognitive Development (ABCD) Study
baseline quartile, arranged from low risk (top) to high risk (down). All participants are ranked according to their scores for psychiatric risk. Each FNC represents
the averaged FNC of 5% of the ABCD Study samples (from left to right, 0% ~5%, 20% ~25%, 70% ~75%, and 95% ~ 100%, respectively). (C) Upper: The
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Figure 3. (A) Left: Cross-correlation among 4
psychiatric risk groups within the 1% lowest-risk
Adolescent Brain Cognitive Development (ABCD)
Study participants; middle: cross-correlation among
4 psychiatric-risk groups within the 1% highest-risk
ABCD Study participants; right: the divergence
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visualization of all ABCD Study baseline samples
(n = 8191). The highlighted dots note the top 1%
high-risk samples for each disorder. The ABCD
Study participants who exhibited risks of SCZ and
ASD had the greatest degree of overlap, consistent
with the comorbidity of the 2 disorders. (D) The BRS
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positive skew indicates that the tail is situated on the right,
which is indicative of patient references. As shown in
Figure 3D, the BRS histogram of ABCD Study individuals
relative to all 4 references showed a strong negative skewness,
indicating a higher similarity to the control reference.

We also evaluated whether the BRS predicted prodromal
scores in the ABCD Study. Because the ABCD Study mainly
includes very young adolescents, we first chose the partici-
pants with the top 1% of BRSs, which we reasoned would be
the ones most likely to present prodromal symptoms (33), to
build linear regression models. As shown in Figure 3E, a sig-
nificant positive correlation (Spearman correlation, r=0.34, p =
.01) was observed between BRS SCZ and the prodromal
score. Similarly, we also analyzed the correlation between the
PRS (4) for SCZ and prodromal symptoms (Figure S5), and the
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results showed no significant correlations between PRS and
prodromal scores. In addition, a significant positive correlation
(Spearman correlation, r = 0.34, p = .0002) was observed be-
tween BRS MDD and cbcl_scr_dsm5_depression_t
(Figure S6).

Performance of BRS to Distinguish Psychiatric
Disorders From Healthy Control Participants

Major psychiatric disorders such as SCZ and BPD typically
emerge during the late teens and early 20s. However, the im-
ages from the ABCD Study adolescents that we analyzed were
obtained between 9 and 13 years of age, too early for
the typical emergence of the disorder. Therefore, we utilized
the HCP-EP dataset to further test the performance of the BRS
in identifying psychiatric disorders. As shown in Figure 4A, the

network connectivity changes, which increase psychiatric risk for each disorder. Blue arrows represent the flip from positive to negative connectivity, while
orange arrows represent the flip from negative to positive. Lower: The averaged FNC of the top 1% of high-risk ABCD Study samples for each disorder. The
color bars in each panel represent the functional connectivity strength. ASD, autism spectrum disorder; AU, auditory domain; BPD, bipolar disorder; CB,
cerebellar domain; CC, cognitive-control domain; DM, default mode domain; MDD, major depressive disorder; SC, subcortical domain; SCZ, schizophrenia;

SM, sensorimotor domain; VI, visual domain.
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mean BRS of the control groups was less than that of the
patient groups, indicating that their brain patterns were more
similar to the control references. We also tested whether
the BRSs could predict patients who were diagnosed with
early psychosis. For this purpose, every participant in the
HCP-EP was represented with a 4-dimensional BRS vector to
train support vector machine (SVM) classifiers to distinguish
patients with early psychosis from healthy control participants.
The performance of the SVM classifiers with Gaussian kernels
was assessed by using 5-fold cross-validation. The classifi-
cation performance was also compared with the SVM trained
on the original FNC, which contained 1378 connectivity fea-
tures. The results showed that the 4-dimensional BRS vectors
had similar classification performance to the original FNC
features, suggesting that the low-dimensional BRS preserved
disorder-discriminating information that was useful to distin-
guish patients with psychotic disorders from control
participants.

DISCUSSION

Assessing individual risk for a particular psychiatric disorder is
essential for providing effective interventions at an early stage.
In this work, we investigated the use of the BRS, a novel
neuroimaging-based metric, to quantify the psychiatric risk of
individuals by comparing the relative distances to FNC refer-
ences derived from multiple large cohort neuroimaging
studies. Our results showed that the BRS displayed 3 impor-
tant capabilities: 1) BRS revealed connectome trajectories
from low-risk to high-risk for each disorder, providing brain
network information relevant to the underlying mechanisms of
psychiatric disorders and comorbidity; 2) BRS was sensitive to
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the presence of prodromal symptoms of psychosis and con-
tained useful information to differentiate patients with psychi-
atric disorders from healthy control participants; and 3) the
FNC patterns within the low-risk categories were present in at
least 25% of the ABCD Study participants and were highly
similar, suggestive of a protective pattern, whereas those
within the high-risk categories diverged from one another.
Despite numerous attempts, the “Holy Grail” of clinical ap-
plications of neuroimaging to psychiatric disorders via
personalized biomarkers has remained mostly elusive (34). A
significant challenge hindering the utilization of data-driven
approaches for biomarker discovery is that the results can
be difficult to compare across individuals. The NeuroMark
framework utilized in the BRS provides a solution for pro-
cessing all fMRI samples using a standardized pipeline, which
leverages the advantage of large datasets and avoids site ef-
fects. In comparison to seed-based approaches, NeuroMark,
which utilized spatially constrained ICA, has been shown to
provide improved control over head motion effects (35). This
spatially constrained ICA was implemented using a template
derived from external data, and it was applied to each partic-
ipant individually, thus eliminating any risk of motion-related
interparticipant contamination. While stringent head motion
standards can enhance data quality, overly rigid criteria may
lead to excessive data exclusion and potentially introduce
study biases (36). In the current study, we set a 3-mm
threshold against pronounced head motion, aiming to retain
the maximum number of participants. The strong correlation
between the PRS with and without regressing out the mean
framewise displacement suggested that the influence of head
motion on the PRS was minimal. Moreover, the high accuracy
of identifying a child’s FNC across years demonstrated the

Figure 4. (A) Brainwide risk score (BRS) distribu-
tions of the Human Connectome Project (HCP) Early
Psychosis dataset for each psychiatric disorder. (B)
Confusion matrix and receiver operating character-
istic (ROC) curve for control participant vs. patient
classification. Even with limited feature dimensions,
the BRS (accuracy [ACC] = 72.9%) outperforms
functional network connectivity (FNC) (ACC =
71.8%) in differentiating patients with early psycho-
sis from healthy control participants. ASD, autism
spectrum disorder; AUC, area under the ROC curve;
BPD, bipolar disorder; MDD, major depressive dis-
order; SCZ, schizophrenia.
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robustness of FNC, highlighting its potential for longitudinally
monitoring developmental factors (10).

The BRS revealed reproducible psychiatric trajectories from
low to high risk for mental disorders. As the psychiatric risk
increased in adolescents, 2 network systems, the SM hub and
CB hub, showed the most significant alterations. Nevertheless,
the transformations of various psychiatric disorders
differed, indicating distinct pathologies among the disorders.
Moreover, the BRS contains abundant information specific to
psychiatric disorders, thereby enabling the accurate prediction
of clinical symptoms, such as prodromal scores, as well as the
precise differentiation between patients with psychiatric dis-
orders and healthy control participants. The increased
subcortical-somatosensory connectivity pattern found in high-
risk ABCD Study samples was reported shared across SCZ,
BPD, and MDD (37-42). The cerebellar-thalamic connectivity
deficits found in high-risk ABCD Study samples support the
cognitive dysmetria theory that cerebello-thalamo-cortical cir-
cuitry disruptions lead to impairments in the coordination of
mental processes in SCZ. Disruptions in the cerebellar cir-
cuitry, a critical component in overall brain function, have also
been reported in conditions such as BPD (43), MDD (44), and
ASD (45). Evidence has demonstrated that connectivity be-
tween the thalamus and cerebellum is a recurring biological
mechanism that underlies multiple psychiatric disorders,
particularly psychotic disorders (46).

In comparison to the PRS (47), which is a static metric
throughout the life span, the BRS is more suitable for
observing dynamic changes linked to brain development.
Considering the substantial effect of environmental factors on
brain development and mental disorders, the use of such a
functional measure is advantageous. The BRS performs better
in capturing syndrome-related features (e.g., prodromal score)
than the PRS. The BRS framework, with its capacity to illus-
trate the risk trajectory for a psychiatric disorder, may also be
suited for tracing illness progression in an individual.

The BRS also provides a novel neuroimaging perspective
for studying the comorbidities of psychiatric disorders. Due to
the presence of shared symptoms across various psychiatric
disorders, diagnostic comorbidity is generally the rule rather
than the exception, and patients frequently have more than
one psychiatric diagnosis. It remains unclear whether this
apparent comorbidity arises from commonalities in underlying
biology or simply reflects a classification system that is ill-
suited to capturing the full complexity of human behavior
and brain neuropathology (1). Given the shared clinical mani-
festations of the 2 disorders (48,49), SCZ and ASD are com-
parable in many ways. For example, in one study, the
prevalence of SCZ was significantly higher in individuals with
ASD than in control participants (50). Nearly 30% of youths
diagnosed with childhood-onset SCZ in a large National In-
stitutes of Health cohort had a comorbid diagnosis of ASD (51).
Genome-wide association analysis also supports the notion
that ASD and SCZ share similar risk factors (52). The BRS is
helpful to explain comorbidity from the connectome perspec-
tive. The integration of genetic and demographic information
with the BRS will facilitate a better understanding of biology in
the future.

The current work has several limitations. Firstly, given that
the ABCD Study participants are currently healthy
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adolescents, the BRS requires validation through follow-up in
the sample as they reach their late teens, by which point a
significant proportion of those who will ultimately develop a
psychotic illness are likely to manifest more overt symptoms.
We chose the averaged Euclidean distance as the metric of
evaluation considering the tradeoff between accuracy and
feasibility, and a similar BRS was replicated using correlation
distance (Figure S7). In the future, more optimized metrics can
be explored by considering the functional connectivity mod-
ules. In addition, even though a large cohort of samples were
collected and analyzed for constructing the references, the
diversity of age and race remains inadequate. Family status
was not incorporated into the current study; in the future, uti-
lizing multisite datasets comprising different races, age ranges,
and siblings would further enhance the representation of the
BRS framework (Figure S8). Moreover, the BRS is currently
calculated solely based on functional neuroimaging. In the
future, the BRS can be integrated with other imaging modal-
ities to identify presumptively more predictive and robust
biomarkers. Future studies could also explore whether inte-
grating a PRS with clinical interviews and the BRS would be
even more successful in identifying at-risk individuals. Finally,
the extent to which the BRS captures information relevant to
mood disorders without psychotic symptoms or its relevance
to other nonserious mental disorders (i.e., attention-deficit/
hyperactivity disorder, eating disorders, anxiety disorders)
require further investigation.

In this work, for the first time, by leveraging large neuro-
imaging datasets and a standardized image-processing pipe-
line, we investigated a novel neuroimaging-based metric, the
BRS, to quantify psychiatric risk in adolescents. The BRS
demonstrated significant capability in assessing risks of psy-
chiatric disorders, elucidating mental disorder comorbidity,
predicting psychiatric symptoms, and distinguishing patients
with disorders from healthy control participants. The BRS
exhibits potential as a biomarker for early screening and
mentoring interventions, either as a standalone tool or in
combination with polygenic scores and clinical assessment
tools.
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