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Maximum Classifier Discrepancy Generative
Adversarial Network for Jointly Harmonizing
Scanner Effects and Improving Reproducibility
of Downstream Tasks

Weizheng Yan®, Zening Fu

Abstract—Objective: Multi-site collaboration is essen-
tial for overcoming small-sample problems when explor-
ing reproducible biomarkers in MRI studies. However,
various scanner-specific factors dramatically reduce the
cross-scanner replicability. Moreover, existing harmony
methods mostly could not guarantee the improved per-
formance of downstream tasks. Methods: we proposed a
new multi-scanner harmony framework, called ‘maximum
classifier discrepancy generative adversarial network’, or
MCD-GAN, for removing scanner effects in the original fea-
ture space while preserving substantial biological infor-
mation for downstream tasks. Specifically, the adversarial
generative network was utilized for persisting the structural
layout of each sample, and the maximum classifier dis-
crepancy module was introduced for regulating GAN gen-
erators by incorporating the downstream tasks. Results:
We compared the MCD-GAN with other state-of-the-art data
harmony approaches (e.g., ComBat, CycleGAN) on simu-
lated data and the Adolescent Brain Cognitive Development
(ABCD) dataset. Results demonstrate that MCD-GAN out-
performed other approaches in improving cross-scanner
classification performance while preserving the anatomical
layout of the original images. Significance: To the best of
our knowledge, the proposed MCD-GAN is the first gen-
erative model which incorporates downstream tasks while
harmonizing, and is a promising solution for facilitating
cross-site reproducibility in various tasks such as classi-
fication and regression.

Manuscript received 16 January 2023; revised 21 July 2023; accepted
29 October 2023. Date of publication 7 December 2023; date of current
version 21 March 2024. This work was supported in part by the National
Institutes of Health under Grants NSF 2112455, NIH RO1DA040487,
R0O1MH118695, and RO1TMH117107, and in part by Natural Science
Foundation of China under Grants 62373062 and 82022035. (Corre-
sponding author: Weizheng Yan.)

Weizheng Yan is with the National Institute on Alcohol Abuse and Al-
coholism, Bethesda, MD 20892 USA (e-mail: weizheng.yan@nih.gov).

Zening Fu and Vince D. Calhoun are with the Tri-Institutional Cen-
ter for Translational Research in Neuroimaging and Data Science
(TReNDS), Georgia State University, USA, and also with the Georgia
Institute of Technology, Emory University, USA.

Rongtao Jiang is with the Department of Radiology and Biomedical
Imaging, Yale School of Medicine, USA.

Jing Sui is with the State Key Laboratory of Cognitive Neuroscience
and Learning, Beijing Normal University, China.

The codes of the MCD-GAN are available at https:/github.com/
trendscenter/MCD-GAN.

Digital Object Identifier 10.1109/TBME.2023.3330087

, Rongtao Jiang
and Vince D. Calhoun

, Jing Sui ™, Senior Member, IEEE,
, Fellow, IEEE

Index Terms—Harmonization, magnetic resonance imag-
ing, maximum classifier discrepancy, generative adversar-
ial network, reproducibility.

[. INTRODUCTION

ULTI-SITE neuroimaging collaboration is a viable way
M to overcome small-sample biases by aggregating sam-
ples from multiple sites or hospitals. However, samples from
different sites are usually collected using various scanning
manufacturers, acquisition protocols, and software versions. As
shown in Fig. 1, the extracted cortical thickness feature from
distinct MRI scanners displays significant group differences,
leading to a loss of efficiency when applying the trained models
or discovered biomarkers from one scanner to the other. This
partly explains the reason for significant deterioration in pooled
classification performance as the sample size increases [1], [2].
Hence, properly harmonizing site/scanner effects is critical for
improving the outcomes of large-sample studies [3].
Non-biological confounds often have unpredictable prior dis-
tributions, making it challenging to be modeled. Most of the
existing image harmonization algorithms [4] can be catego-
rized into two types: residual-based [5], [6], [7], [8], [9] and
generative adversarial network (GAN)-based methods [3], [7],
[10], [11]. Residual-based approaches (e.g., residual regression,
ComBat [6], [8], and Neuroharmony [5]) harmonize samples
from different scanners by estimating the distribution of con-
founds based on three assumptions: /) independence: the mutual
correlations between features can be ignored; 2) linearity: the
distribution of the confounds can be estimated and removed
using linear models; 3) simultaneity: all samples to be harmo-
nized are accessible at the same time. ComBat and its variants
perform a Bayesian regression that corrects the measurements
from different samples with addictive and multiplicative terms,
and have been successfully applied for harmonizing multi-site
cortical thickness features especially when the sample size is
relatively small. However, ComBat requires all samples scanned
by various scanners to be put together for harmonization, which
means the analysis finished on the harmonized dataset should
be rerun if new samples scanned using different scanners are
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Fig. 1. Visualization of scanner effects. (a) Comparison of the cortical
thickness of a specific brain region (left hemisphere supramarginal ROI,
z-scored) scanned by GE discovery (n = 2860 subjects) and SIEMENS
prisma (n = 3075); (b) TSNE visualization of all cortical thickness
features (n = 68) of all subjects collected using GE discovery (n =
2860) and SIEMENS prisma (n = 3075). Notes: The cortical thickness
features are preprocessed by the ABCD research consortium and are
downloaded from https://nda.nih.gov/abcd/.

to be added, leading to a considerable amount of repetitive
work.

Compared to residual-based approaches which usually ignore
the mutual correlations among features, GAN-based approaches
can capture more complex non-linear relations using multiple
layers [7], [11], [12]. Cycle-consistent generative adversarial
network (CycleGAN), has been applied for multi-site MRI har-
monization [7]. Another advantage of GAN-based approaches
is they do not require samples of all scanners to be accessed at
the same time. Instead, they use samples from a specific scanner
to build the source domain, then map samples from other scan-
ners to the source domain, making continuous harmonization
possible.

However, neither residual-based nor GAN-based harmony
approaches can guarantee improved performances for specific
downstream tasks. Even worse, if the scanner confounds are
estimated incorrectly, harmonizing may even degrade the per-
formance of downstream tasks. To overcome this issue, the
downstream task should be incorporated when harmonizing.
Domain adaptation [13], [14], [15] aims to theoretically guar-
antee that the model trained on the source domain can also
achieve high performance on the target domain. The domain
adaptation approach usually trains a task-specific model by
mapping both source and target samples into a domain-shared
subspace. Maximum classifier discrepancy (MCD) [16], which
utilizes the discrepancy of two classifiers for constraining map-
pings from original space to a domain-shared subspace, is a
practical framework in the domain adaptation field. However, the
original MCD implementation could not maintain anatomical
information, limiting its application in the medical imaging
field.

In this work, by combining the advantages of both harmo-
nization and domain adaptation, we aimed to design a new
data harmony method named maximum classifier discrepancy
generative adversarial network (MCD-GAN). The MCD-GAN
has three strengths as follows: /) harmonizing multi-scanner
samples while preserving their anatomical layouts; 2) incor-
porating the downstream task information to modulate the

harmonization for improving the downstream task performance;
3) compatibility for continuous harmonization.

The paper is organized as follows. Section II describes the
related data harmony and domain adaptation methods includ-
ing residual-based, CycleGAN, and Maximum Classifier Dis-
crepancy. Second III describes the methodological overview,
network architecture, learning objectives, training steps, and
theoretical analysis of the proposed MCD-GAN. In Section IV,
the MCD-GAN is applied to simulated data and the Ado-
lescent Brain Cognitive Development (ABCD) dataset. The
harmonization and classification are compared with ComBat
and CycleGAN. In Section V, the advantages, limitations, and
future directions are further discussed. The MCD-GAN code is
available via https://github.com/trendscenter/MCD-GAN.

[I. RELATED WORK

Residual-based harmony: Residual-based approaches typ-
ically harmonize data using linear regression. ComBat is a
method adopted from the genomic literature [9], and has been ap-
plied for harmonizing diffusion tensor imaging [8] and cortical
thickness [6] in multiple sites samples. ComBat extends the con-
ventional residual regression by modeling site-specific scaling
factors and using empirical Bayesian to improve the estimation
of site parameters for small sample sizes. The model assumes
that the expected value of the imaging features can be modeled as
a linear combination of biological variables and scanner effects,
whose error term is modulated by additional scanner-specific
scaling factors. The ComBat can remove unwanted confounds
associated with the scanner while preserving other biological
associations in the samples.

CycleGAN harmony: CycleGAN utilizes two generators,
G s+ and G, 4, to learn the the mappings from source domain to
target domain and its inverse mapping. Two discriminators, D
and Dy, utilize adversarial loss measure how realistic the gen-
erated images (Gs_,+(X;s) = X; or Gi,5(Xt) = X) are by an
adversarial loss and how well the original input is reconstructed
after a sequence of two generators (Gs_¢(Gi—s(x¢)) = x4 Or
G s(Gsi(xs)) = x4)) by circle consistency losses. Thus, the
objective of training the CylceGAN is to make the distribution of
images generated from G+ (25) (or Gi,s(2¢)) indistinguish-
able from the distribution x; (or x).

CycleGAN has been applied to MRI for multi-site harmony
while preserving the anatomical layout of the MRI [7], [10],
[17]. For example, Bashyam et al. utilized a modified CycleGAN
architecture for removing site effects and achieved improved
cross-site age prediction performance than without harmoniza-
tion.

Maximum Classifier Discrepancy (MCD): MCD is a method
proposed for aligning distributions of source and target by
utilizing task-specific decision boundaries [13], [16]. MCD con-
sists of two core modules: two task-specific classifiers and one
domain-shared feature extractor. The two task-specific classi-
fiers are trained for the specific downstream task (e.g., image
classification). The classifiers are optimized to identify the cat-
egory of source domain samples by taking features from the
feature extractors. When applying the trained classifiers to target
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TABLE |
COMPARISON OF SITE-EFFECTS HARMONY APPROACHES
Continuous Task- Non- Preserve
harmony? specific?  linear? layout?
Combat [6] x x x N
Cycle-GAN [7] v x N N
MCD [16] x v \ x
MCD-GAN \ \ \ \
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Fig. 2. Overview of the proposed MCD-GAN model. The model con-
tains two generative modules, Gs_,; and G;_,s, and corresponding ad-
versarial discriminators, D, and D;. Through adversarial training, the
G5t can learn to map source domain samples into the target domain,
and the G, can learn to map target domain samples into the source
domain. Two classifiers, F; and F», are optimized for maximizing the
discrepancy of generated source sample’s classification results (shown
as blue pipelines) while maintaining the classification performance on
source domain samples (shown as green pipelines). The G;_,; is also
optimized according to the discrepancy for regulating the mapping from
the target domain to the source domain.

domain samples, some samples in the target domain which are
far from the support of the source domain are misclassified.
By maximizing the discrepancy between the two classifiers,
the target domain samples which are far from the support of
the source domain can be detected. As for the domain-shared
feature extractor, it is optimized for generating target features
for minimizing the discrepancy between two classifiers. In this
way, the feature extractor is constrained to generating fea-
tures that have more consistency between source and target
domains. One problem of the MCD approach is it maps features
to a subspace without preserving its semantical information,
limiting its usage in neuroimaging studies. A comprehensive
comparison of the above algorithms is shown in Table I.

[ll. METHODS
A. Methodological Overview

Fig. 2. is a conceptual overview of our proposed MCD-GAN
framework consisting of two core modules: CycleGAN and two
classifiers. The CycleGAN contained two generators (Gs_,; and
G'-,s), and respective adversarial discriminators (D, and D).
Dy constrained G5_; to generate high-quality samples from the
source domain to the target domain. D; constrained G5 to

generate samples from the target domain to the source domain.
The two classifiers (F; and F5>) were first optimized for clas-
sifying source domain samples. The optimized classifiers were
then applied to the unlabeled generated samples from the target
domain to get predicted labels respectively. The discrepancy
between the two classifiers was obtained by comparing the
different classification results of the two classifiers on generated
samples. Two steps as follows were iteratively conducted to max-
min the classifier discrepancy: 1) Optimize the two classifiers
(Fy and F5) to maximize the discrepancy on ‘fake’ (generated
from the target domain using G;_, ) samples while maintaining
the classification performance on source domain samples; 2)
Optimize the G;_, s for minimizing the classification discrepancy
on ‘fake’ samples.

B. Model Architecture and Design Details

The proposed MCD-GAN model is a general framework
consisting of generators, discriminators, and classifiers. The
details of the architecture can be modified to fit the characteris-
tics of the input features. In this study, three datasets (“‘double
moon” (Fig. 3(a)), cortical thickness vectors (Fig. 3(b)), and
T1-weighted MR images (Fig. 3(c)) were used for testing the
performance of the MCD-GAN. Detailed architectures of the
model for each dataset are shown below:

1) Generators: For “double moon” and cortical thickness
vectors, fully connected networks are used as generators.
For T1-weighted MR images, U-Nets are used as gener-
ators.

2) Discriminators: For “double moon” and cortical thick-
ness vectors, fully connected networks are used as the
discriminators. For T1-weighted MR image features, U-
Nets are used as the discriminators.

3) Classifiers: For “double moon” and cortical features,
fully connected networks are used as classifiers. For the
T1-weighted MR image features, 3D-CNNs are used as
classifiers.

C. Learning Objectives

The loss functions of the proposed MCD-GAN consist of
adversarial loss, cycle-consistency loss, classification loss, and
max-discrepancy loss. Details of the loss functions are listed as
follows:

1) Adversarial loss: The bidirectional cycles are utilized for
performing global domain alignment in the adaptation
process. The source domain loss Lgan (Gis, D) and
target domain loss Lgan (Gs_t, D) are:

Lgan (Gt%s; D,, X, Xt) :_Exsfvpdam(ms) IOgDs(xs)

— Eoympaara(ay) 108 (1= Ds (Giss (71))) (1)
Laan Gty D, X, Xo) =—Fypyoia (20) 108 Dy ()
- Exs"‘pdata(xs) log (]‘ - Dt (GS‘}t (xS))) (2)

where Dy and Dy are discriminators corresponding to the source
and target domains. Gs_; is the generator mapping source
domain features to the target domain, G, s is the generator to
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map target domain features to the source domain. Xy and X, are
samples from the source domain and target domain respectively.
2) Cycle-consistency loss: The cycle consistency loss is
utilized to regularize the two generators (Gs_,; and G, ).

The loss of cycle consistency is as follows:

Lcyc (GS—)ta Gtﬁs) :Ezsrwpdam (zs) Gt%s (Gsﬁt (xs) _ms)l

+ B piara @) Gt Gros @) — )y
3)

The CycleGAN loss is a weighted summation of the adver-
sarial loss and cycle-consistency loss as follows:

L(Gs—>t7Gt—>saDS7 Dt) = LGAN (Gt—>S7DS)

+ LGAN (Gsﬂta Dt) + aLcyc
(4)

where « is the hyperparameter that controls the ratio between
adversarial loss and cycle-consistency loss « is set to 10 in
default [12].
3) Classification loss: The classifiers are trained on source
domain samples. The loss function is as follows:

Letass = E(Fl (Xs)7Y)+E(F2 (XS),Y) (%)

where F denotes the cross-entropy loss. X, represent the
samples from the source domain. Y represents the ground truth
labels of samples. F and F5 are classifiers.

4) Classifiers discrepancy loss: The two deep learning clas-
sifiers are first trained using samples from the source
domain, then directly applied to samples generated from
the target domain samples for testing and calculating the
two classifiers’ discrepancy. Similar to [16], we utilize the
absolute value of the difference between two classifiers’
probabilistic outputs as discrepancy loss:

Ldiscrepancy == ‘Fl (Gt—>s (Xt)) - F2 (Gt—>s (Xt))|
(6)

D. MCD-GAN Training Steps
The training steps of the proposed MCD-GAN are as follows:

Step A: The generators and discriminators are pre-trained from
random to roughly align the source domain and target domain.
The objective function is as follows:

min L (Gs—>t7 Gt—)s; st Dt) (7)

Gsst,Gioss,Ds, Dy

Step B: Two classifiers (F; and F5) are trained using samples
from the source domain. The optimized classifiers are then
tested on the unlabeled ‘fake’ samples generated from the tar-
get domain samples using G4, s. The discrepancy between the
two classifiers on unlabeled ‘fake’ samples is maximized by
optimizing the classifiers while preserving the classification
performance on the source domain. Therefore, the objective
function in step B is as follows:

min {Lclass - )VLdiscrepancy} (8)
Fi1,F>
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where X is a hyperparameter that controls the ratio between the
classification loss and the discrepancy loss. The effect of the A
is further discussed in the “discussion” section.

Step C: The generatorG;_, ¢ is optimized to minimize the dis-
crepancy between the two classifiers. The term denotes the
trade-off between the generator and classifiers. The objective
is as follows:

min {Ls (Gs%t; Gt%sv Ds) + ﬂLdiscrepancy} (9)

t—s

For simplicity, the 5 in (9) is set the same as the A in (8). The
above three steps are repeated until convergence.

E. Theoretical Analysis

The MCD-GAN is motivated by the domain adaptation theory
proposed by Saito et al. [16] and Ben-David et al. [18]. Here, we
introduce the relations between the MCD-GAN and the previous
work. Ben-David et al. [18]. proposed the theory that bounds
the expected error on the target samples, R;(h), by using three
terms: /) expected error on the source domain, R (h); 2) the
discrepancy between two classifiers, dgapg (S, T'), where S
and T denote source and target domain respectively; 3) the
shared error of the ideal joint hypothesis . Another theory
proposed by Ben-Divid et al. [19] bounds the error on the target
domain and introduced domain divergence d (S, T'). The two
theories and their relationships are explained as follows:

Theorem 1: Let H be the hypothesis class. Given two do-
mains S and 7', we have:

Vh e H, R, (h)

1
S Rs (h) + §dHAH (SaT) + e

1
< R (h) + 5du (S.T) +<

duan (S.T)= 2 supp pyen?|Eavs I[h () # 1 ()]

—Eoorl[h(z) # W (2)],

dH (S,T) = 2$uph€H

Ex.s] {h (z) # 1}

— EgrI [h(z) # 1]

& —min | R, () + Br ()] 10

where Rp(h) is the error of hypothesis & on the target domain,
and R, (h) is the corresponding error on the source domain. [ [a]
is the indicator function, which is 1 if the predicate is true and 0
if false.

The H distance is empirically measured by the error of the
domain classifiers which are trained to discriminate the domain
of features. € is a constant that is considered sufficiently low
to achieve an accurate adaptation. Here, we further show the
relationship between our MCD-GAN model and the HAH
distance.

As for dyap(S,T), if both the two classifiers (h
and h’) can accurately classify source samples, the term

Origin ComBat

Domain 1 Class 2
¢ Domain 2 Class 2

Domain 1 Class 1
@ Domain 2 Class 1

Fig. 4. Harmonization comparison on simulated “double moon”
dataset. Two domains (domain 1 and domain 2) of samples are simu-
lated. Each domain consists of two categories (class 1 and class 2). Do-
main 2 is obtained by rotating domain 1 by 30 degrees counterclockwise.
Notes: Top left: Original samples; top right: Samples after harmonizing
using ComBat; bottom left: The samples of domain 2 are mapped to
domain 1 using CycleGAN; bottom right: The samples of domain 2 are
mapped to domain 1 using MCD-GAN.

E I,..s[h(z) # h'(z)] can be very small. i and h’ should be
consistent on source samples. Thus, dga g (S, T) will approx-
imate the upper boundary of the expected disagreement of the
two classifiers’ predictions on target samples.

We assume that h and R’ take features from a shared
feature extraction module. Then we decompose the
hypothesis h into Gy,s — F1, and h' into Gy, — Fb,
Gis, F1 and F, correspond to the network in our
proposed MCD-GAN model. If we substitute those
notations  into  the  sup(y pyep2 B I[h(z) # B ()],
for fixed Gy, the term will become
sup(pyFy)  Eoor  I[F1(Gios(x)) # Fo(Giss(x))]. Fur-
thermore, if we replace sup with max and minimize the term
related to G4_, 5, we obtain

min min  E I[F (Gess (2) # F2 (Gios (2))]

Y

This is equivalent to the min-max problem we solve in MCD-
GAN, in which classifiers are trained to maximize their dis-
crepancy on target samples and the generator tries to minimize
it. Therefore, the MCD-GAN which combines the MCD and
CycleGAN is the framework that can not only maintain the
anatomical layout of the samples but also improve the classi-
fication performance of downstream tasks.

IV. EXPERIMENTS
A. Data and Preprocessing

1) Simulated data (double moon): As shown in Fig. 4(b). The
double moon source domain (domain 1) data is simulated using
the ‘make_moons’ function in Sklearn (https://scikit-learn.org/
stable/). The noise hyper-parameter was set as 0.1. The number
of source domain samples was set as 1000. The samples at the
top ‘moon’ belong to category 1 and the samples at the bottom
‘moon’ belong to category 2. By rotating the source domain 30
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TABLE Il
DEMOGRAPHIC INFORMATION OF THE ABCD DATASET

GE SIEMENS
(Discovery) (Prisma)
Cortical thickness (68 features) 2860 subjects 3075subjects
sMRI (121*145%121 voxels) 2860 subjects 3075subjects
Gender(F/M) 1376/1484 1433/1642
Age of months(mean+std) 118.24+7.6 119.3+7.5

degrees counterclockwise, we obtained target domain (domain
2) samples.

2) ABCD Cortical Thickness features: The ABCD study
(https://abcdstudy.org) is a longitudinal, large-scale research
project which collected multiple data types from over ten thou-
sand US children to identify the internal and external factors
that can affect an individual’s developmental trajectory [20]. The
data are available to qualified researchers via a repository man-
aged by the National Institute of Mental Health Data Archive
(NDA; https://nda.nih.gov/abcd). The data were collected using
scanners of three main manufacturers including GE, SIEMENS,
and Philips. In this work, the samples scanned using GE Discov-
ery and SIEMENS Prisma are selected for analysis. The cortical
thickness features are preprocessed as in [21]. The demographic
information is shown in Table II.

3) ABCD T1-weighted MR images: T1-weighted MR images
scanned using GE Discovery and SIEMENS scanners are in-
cluded. The MRI data were segmented into tissue probability
maps for gray matter, white matter, and cerebral spinal fluid
using SPM 12 toolbox. The gray matter images were then warped
to standard space, modulated, and smoothed using a Gaussian
kernel with an FWHM = 10 mm. The preprocessed gray matter
volume images have a dimensionality of 121 x 145 x 121 in
the voxel space, with a voxel size of 1.5x 1.5 x 1.5 mm?. The
demographic information is shown in Table II.

B. Implementation Details

The proposed models were implemented based on Tensor-
flow2 (https://www.tensorflow.org/). Adam with an initial learn-
ing rate of 10~* was used as the optimizer for all models.
All the above models were implemented on the cluster (In-
tel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz, 20 CPU cores)
with a GPU (Tesla V100-SXM2-32GB). ComBat was imple-
mented based on the codes downloaded from https://github.com/
Jfortin1l/ComBatHarmonization. The detailed architectures of
CycleGAN and MCD-GAN are described in Fig. 3. More details
of the model can be found in our codes https://github.com/
trendscenter/MCD-GAN.

C. Evaluation Scores and Baseline Methods

In our study, the downstream task for double moon data
was category classification. The task for the ABCD dataset
was gender classification. The performance was evaluated by
three metrics including accuracy (ACC), sensitivity (SEN), and

specificity (SPE) as defined below:

TP+TN
A =
ce TP+TN+FP+FN’

TP TN
N=_""__ SPE =_— """
SE TP+FN’SE TN+ FP’

where TP, TN, FP, and FN are donated as true positive, true
negative, false positive, false negative, and positive predictive
values respectively.

D. Simulated Data Results

As shown in Fig. 4, the performance of the proposed MCD-
GAN was compared with ComBat and CycleGAN on simulated
‘double moon’ data. Before harmony, the classifier trained on
domain 1 could not perform well on domain 2 (fig. 4, top left)
because of the inconsistency of the two domains. The ComBat
harmonized the two domains by rescaling and relocating sam-
ples in both two domains. However, ComBat was not able to
model or remove the nonlinear confounds such as the rotation
effects. The Cycle-GAN could accurately model the non-linear
site effects and achieved better performance than ComBat. The
flaw of CycleGAN was it only modeled the global distribution
of two domains without incorporating the downstream task
information. As shown in the bottom left of Fig. 4, the samples in
domain 2 which were far from the center could not be correctly
harmonized. Differently, MCD-GAN utilizes the downstream
classification task information as a constraint and therefore
achieved the best performance. In addition, as can be seen in
Fig. 4, the ComBat required the change of both source and
target domain samples for harmony, however, the CycleGAN
and MCD-GAN harmonized samples by mapping the domain
2 samples to domain 1 without changing the original domain
1 samples. Therefore, the GAN-based approaches are more
suitable for continuous harmonizing when tackling multiple
domains.

E. ABCD Cortical Thickness Feature Harmony

To compare how each data harmony algorithm changes the
data, the numerical values of ABCD cortical thickness features
are visualized. As shown in Fig. 5, before harmonization, the
samples collected using GE discovery and SIEMENS Prisma
exhibits significant differences. The ComBat harmonized the
features by changing both the source domain (GE Discovery)
and the target domain (SIEMENS Prisma). The CycleGAN and
MCD-GAN keep the source domain (GE Discovery) unchanged
while mapping the features in the target domain (SIEMENS
Prisma) to the source domain (GE Discovery). In addition, we
utilized tSNE for visualizing all ABCD samples (n = 5935) by
taking the cortical thickness features (n = 68) as input. Before
harmonizing, the samples from GE Discovery and SIEMENS
Prisma exhibit clear cluster boundaries. All the harmony meth-
ods, including ComBat, CycleGAN, and MCD-GAN, could
remove the scanner effects.

As shown in Fig. 5(b), ComBat harmonized scanner effects by
changing the numeric value of all scanners. Differently, as shown
in Fig. 5(c) and (d), GAN-based approaches mapped SIEMENS
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Fig. 5. Harmonization comparison on ABCD cortical thickness fea-
tures. Notes: The left figure in each subplot is the visualization of one
specific cortical thickness feature (left hemisphere supramarginal ROI)
scanned by GE discovery and SIEMENS prisma; the right figure in each
subplot is the visualization of all cortical thickness features. p** < 0.001.

TABLE I
COMPARISON OF CLASSIFICATION PERFORMANCE OF HARMONIZATION
METHODS
Origin ComBat CycleGAN MCD-GAN
Double train(%) 99.8+0.0  99.8+0.0 99.8+0.0 99.8+0.0
Moon test (%)  56.3+0.0  75.2+0.0 83.0+1.1 97.5£1.0
Cortical train(%) 64.0£0.0 64.5+0.0 64.0£0.0 64.0+0.0
thickness test (%)  58.8+0.0  60.0£0.0 59.7£0.5 60.9+0.9
T1-weighted train(%) 95.4+1.7 954+1.7 95.4£1.7 95.4+1.7
MRI test (%)  75.2+5.5 82.4+2.8 81.6+1.6 84.4+1.9

Notes: For double moon data, the classifiers are trained on domain 1
and tested on domain 2. For cortical thickness and T1-weighted MRI,
the classifiers are trained on GE samples (or harmonized GE samples
for ComBat) and tested on the harmonized SIEMENS samples.

samples to GE domain for harmony. Therefore, assuming there
are new samples scanned using Philips scanner to be harmo-
nized, the GAN-based methods only need to map the Philips
samples to GE domain. Therefore, compared to ComBat, the
GAN-based methods are more flexible for continuous multi-
scanner harmonizing especially when not all scanner samples
are accessible at the same time.

F. Classification Results After Harmonization

The downstream cross-domain classification performances
are compared with ComBat and CycleGAN. For the simulated
‘double moon’ data, the position of the dots is used as the
ground truth label. For the ABCD dataset, the gender of each
subject was used as label to be predicted. In addition, for simu-
lated ‘double moon’ and ABCD cortical thickness features, the
support vector machine (SVM) with Gaussian kernel was used
for cross-domain classification after harmonizing. For ABCD
T1-weighted MRI data, a 3D CNN network was utilized for
gender classification after harmonizing. As shown in Table III
and Fig. 6, the proposed MCD-GAN could guarantee the im-
provement of task performance after harmonization.

For MCD-GAN, the hyperparameter A influenced the data
harmony effects by controlling the weight of classifier dis-
crepancies. Here, we compared the downstream classification

Double Moon

Cortical Thickness T1-weighted 3D MRI
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Fig. 6. Comparison of downstream classification performances of dif-

ferent harmony approaches. (a) Comparison of the accuracy of cross-
scanner classification; (b) effects of hyper-parameter A which controls
the discrepancy ratio. For double moon data, the optimized A is 1.6, and
for cortical thickness feature, the optimized 2 is 0.1. For T1-weighted 3D
MRI, the optimized A is around 0.02.

(a) Effects of maximum discrepancy parameter A.
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0 A : A o Y8 - 28
. A-oa%&\ . A-1sz§h'
acc=0.93 ' acc=0.97 acc=0.96
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. A=32
acc=0.96

MCDGAN (A=3.2)
acc=0.95

ey
CycleGAN
acc=0.75

GRS
Origin % e
acc=0.52

acc=0.78

® Domain 1Class 1 ®Domain 1 Class 2 XDomain 2 Class 1 X Domain 2 Class 2

Fig. 7. (a) Visualization of the effects of maximum discrepancy con-
trol hyperparameter A. 1 € {0, 0.1,0.2,0.4,0.8,1.6,3.2,6.4}, ‘acc’ rep-
resents the cross-domain classification accuracy; (b) visualization and
comparison of harmonization methods for non-linear confounds. The
simulated “double pancake” data has two domains: Domain 1 contains
2D points that are randomly scattered in a circle. The sample size is
1000. The samples whose Y value over 0.5 is category 1, and the
samples whose Y value is below 0.5 is category 2. Domain 2 points
are generated by translation and rotating domain 1 by 30 degrees coun-
terclockwise. MCD-GAN can thus correctly harmonize the non-linear
confounds which are ignored by ComBat and CycleGAN (as arrow
points).

performance under different . when the A was set to O, the
MCD-GAN degenerated to CycleGAN. The results are shown
in Fig. 6(b). and Fig. 7(a). As X increased exponentially, the clas-
sification performance increased, however, when A was above a
threshold, the classification performance started to decrease. For
double moon data, the optimized A was 1.6, for cortical thickness
feature, the optimized A was 0.1. For T1-weighted 3D MRI, the
optimized A was 0.02.
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V. DISCUSSION

Harmonizing scanner-related confounds is essential for im-
proving cross-scanner reproducibility in multi-site neuroimag-
ing studies. Conventional data harmony methods including
residual-based and GAN-based are not designed to theoretically
guarantee improved performance on specific downstream tasks.
By leveraging the advantages of both data harmony and do-
main adaptation, our proposed MCD-GAN has three main ad-
vantages: 1) MCD-GAN can theoretically guarantee improved
performances on specific downstream tasks after harmonization;
2) MCD-GAN reduces inter-scanner heterogeneity while pre-
serving the anatomical layout of images; 3) Different from Com-
Bat which requires the change of all samples, the MCD-GAN
harmonizes samples by mapping the target domain samples to
the source domain, making it more flexible and suitable for
continuous harmonizing.

Data harmony and domain adaptation are two categories
of approaches for improving the consistency among multiple
datasets and modalities. Data harmony approaches focus on
estimating the distribution of the confounds and then utilizing
specific algorithms to remove the confounds from original fea-
tures, without breaking the anatomical information of original
samples. Domain adaptation approaches focus on searching the
domain invariant subspace. Therefore, if the distributions of
confounds can be accurately estimated and are not relevant to the
downstream tasks, data harmony should be preferred because the
harmonized samples are general to various downstream tasks.
However, when the confounds are usually non-linear and im-
practical to be accurately estimated, domain adaptation methods
are preferred because the downstream tasks are considered. Our
proposed MCD-GAN is a domain adaptation algorithm that
preserves the anatomical information of original images, making
it viable for neuroimaging studies.

The non-linear property of deep neural networks makes them
unintuitive for interpretation, especially when input features are
high-dimensional. To visualize how different harmony methods
manipulate non-linear confounds, a simulated ‘double pancake’
was utilized. As shown in Fig. 7(b), samples in domain 2
(green) were generated using domain 1 (red) samples by anti-
clockwise 30° and then displacement. The ComBat only linearly
transformed the domain 1 and domain 2 samples, ignoring the
nonlinear confound, causing the failure of downstream clas-
sification after harmony. CycleGAN also failed to modify the
distribution of generated samples according to the downstream
classification task. Differently, our proposed MCD-GAN could
improve the downstream classification performance by consid-
ering categorical information. Therefore, the classifiers trained
on domain 1 can achieve satisfying performance when directly
migrated to the harmonized data for conducting specific classi-
fication tasks.

Some open issues exist and should be addressed in future
work. First, the proposed MCD-GAN utilizes CycleGAN for
preserving the anatomical layout of the images. This means
harmonizing datasets which contain K scanners requires train-
ing K-I models to map the samples from K-/ domains into
the selected domain one by one. As the K increases, the

computational complexity would increase linearly. Thus, in the
future, a balance between the computational complexity and the
performance in removing confounds is to be studied. Second, in
this work, we mainly focused on scanner effects, however, other
confounds (e.g., age, race, educational years) may also hamper
the reproducibility of neuroimaging studies. These need to be
further studied in future work. Third, the GAN-based approach
usually requires more samples for training in comparison to
ComBat, it is worthy studying how to reduce training samples
while maintaining the harmonization performance. Fourth, the
proposed MCD-GAN model is a general framework that can
also be extended by designing the classifiers according to spe-
cific downstream tasks, such as mental disorder classification,
segmentation, and regression.

VI. CONCLUSION

We propose the MCD-GAN, which takes advantage of both
adversarial generative network and maximum discrepancy clas-
sifier approaches, for harmonizing the scanner effects, preserv-
ing the anatomical information, and improving the downstream
cross-scanner classification performances. The advantage of the
MCD-GAN was validated on simulated data and the ABCD
MRI dataset. The mechanisms of MCD-GAN and the hyper-
parameters were theoretically proved, visualized, and tested. In
summary, MCD-GAN, as a general framework, is promising
to facilitate cross-site reproducibility effectively in broad neu-
roimaging studies.

REFERENCES

[1] G. Varoquaux, “Cross-validation failure: Small sample sizes lead
to large error bars,” Neurolmage, vol. 180, pp.68-77, Oct. 2018,
doi: 10.1016/j.neuroimage.2017.06.061.

[2] J. Sui et al., “Neuroimaging-based individualized prediction of cog-
nition and behavior for mental disorders and health: Methods and
promises,” Biol. Psychiatry, vol. 88, no. 11, pp. 818-828, Dec. 2020,
doi: 10.1016/j.biopsych.2020.02.016.

[3] N. K. Dinsdale, M. Jenkinson, and A. I. L. Namburete, “Deep learning-
based unlearning of dataset bias for MRI harmonisation and con-
found removal,” Neurolmage, vol. 228, Mar. 2021, Art. no. 117689,
doi: 10.1016/j.neuroimage.2020.117689.

[4] F.Huetal., “Image harmonization: A review of statistical and deep learning
methods for removing batch effects and evaluation metrics for effec-
tive harmonization,” Neurolmage, vol. 274, Jul. 2023, Art. no. 120125,
doi: 10.1016/j.neuroimage.2023.120125.

[5] R. Garcia-Dias et al., “Neuroharmony: A new tool for harmonizing volu-
metric MRI data from unseen scanners,” Neurolmage, vol. 220, Oct. 2020,
Art. no. 117127, doi: 10.1016/j.neuroimage.2020.117127.

[6] J.-P. Fortin et al., “Harmonization of cortical thickness measurements
across scanners and sites,” Neurolmage, vol. 167, pp. 104—120, Feb. 2018,
doi: 10.1016/j.neuroimage.2017.11.024.

[71 V.M. Bashyam et al., “Deep generative medical image harmonization for
improving cross-site generalization in deep learning predictors,” J. Magn.
Reson. Imag., vol. 55, pp. 908-916, 2022, doi: 10.1002/jmri.27908.

[8] J.-P. Fortin et al., “Harmonization of multi-site diffusion tensor imaging
data,” Neurolmage, vol. 161, pp. 149-170, 2017.

[91 W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in

microarray expression data using empirical Bayes methods,” Biostatistics,

vol. 8, no. 1, pp. 118-127, 2007.

G. Modanwal et al., “MRI image harmonization using cycle-consistent

generative adversarial network,” Proc. SPIE, vol. 11314, pp. 259-264,

2020.

H. Guan et al., “Multi-site MRI harmonization via attention-guided deep

domain adaptation for brain disorder identification,” Med. Image Anal.,

vol. 71, Jul. 2021, Art. no. 102076, doi: 10.1016/j.media.2021.102076.

[10]

(1]

Authorized licensed use limited to: National Institutes of Health. Downloaded on November 24,2024 at 16:25:20 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1016/j.neuroimage.2017.06.061
https://dx.doi.org/10.1016/j.biopsych.2020.02.016
https://dx.doi.org/10.1016/j.neuroimage.2020.117689
https://dx.doi.org/10.1016/j.neuroimage.2023.120125
https://dx.doi.org/10.1016/j.neuroimage.2020.117127
https://dx.doi.org/10.1016/j.neuroimage.2017.11.024
https://dx.doi.org/10.1002/jmri.27908
https://dx.doi.org/10.1016/j.media.2021.102076

1178

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 4, APRIL 2024

[12]

[13]

[14]

[15]

[16]

J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 2242-2251.

M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135-153, 2018, doi: 10.1016/j.neucom.
2018.05.083.

R. Wang, P. Chaudhari, and C. Davatzikos, “Embracing the disharmony
in medical imaging: A simple and effective framework for domain
adaptation,” Med. Image Anal., vol. 76, Nov. 2021, Art. no. 102309,
doi: 10.1016/j.media.2021.102309.

G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adap-
tation,” Assoc. Comput. Machinery Trans. Intell. Syst. Technol., vol. 11,
no. 5, pp. 1-46, 2020, doi: 10.1145/3400066.

K. Saito et al., “Maximum classifier discrepancy for unsupervised domain
adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3723-3732.

[17]

[18]

[19]

[20]

[21]

P. J. Alberto, S. D. Fernandez, and F. Enzo, “Unsupervised domain
adaptation via CycleGAN for white matter hyperintensity segmentation in
multicenter MR images,” Proc. SPIE, vol. 11583, 2020, Art. no. 1158302,
doi: 10.1117/12.2579548.

S. Ben-David et al., “A theory of learning from different do-
mains,” Mach. Learn., vol. 79, no. 1, pp.151-175, May 2010,
doi: 10.1007/s10994-009-5152-4.

S. Ben-David et al., “Analysis of representations for domain adaptation,”
in Proc. Adv. Neural Inf. Process. Syst., 2007, vol. 19, pp. 137-144.

B. J. Casey et al., “The adolescent brain cognitive development (ABCD)
study: Imaging acquisition across 21 sites,” Devlop. Cogn. Neurosci.,
vol. 32, pp. 43-54, Aug. 2018, doi: 10.1016/j.dcn.2018.03.001.

D. J. Hagler Jr. et al., “Image processing and analysis methods for the
adolescent brain cognitive development study,” Neuroimage, vol. 202,
Nov. 2019, Art. no. 116091, doi: 10.1016/j.neuroimage.2019.116091.

Authorized licensed use limited to: National Institutes of Health. Downloaded on November 24,2024 at 16:25:20 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1016/j.neucom.2018.05.083
https://dx.doi.org/10.1016/j.neucom.2018.05.083
https://dx.doi.org/10.1016/j.media.2021.102309
https://dx.doi.org/10.1145/3400066
https://dx.doi.org/10.1117/12.2579548
https://dx.doi.org/10.1007/s10994-009-5152-4
https://dx.doi.org/10.1016/j.dcn.2018.03.001
https://dx.doi.org/10.1016/j.neuroimage.2019.116091


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


