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Background: Psychiatric disorders are categorized using self-report and observational information rather than bi-
ological data. There is also considerable symptomatic overlap between different types of psychiatric disorders,
which makes diagnostic categorization and multi-class classification challenging.
Methods: In this work, we propose a unified framework for supervised classification and unsupervised clustering
of psychotic disorders using brain imaging data. A new multi-scale recurrent neural network (MsRNN) model
was developed and applied to fMRI time courses (TCs) for multi-class classification. The high-level representa-
tions of the original TCs were then submitted to a tSNE clusteringmodel for visualizing the group differences be-
tween disorders. A leave-one-feature-out approach was used for disorder-related biomarker identification.
Results: When studying fMRI from schizophrenia, psychotic bipolar disorder, schizoaffective disorder, and
healthy individuals, the accuracy of a 4-class classification reached 46%, significantly above chance. The hippo-
campus, supplementary motor area and paracentral lobule were discovered as the most contributing regional
TCs in the multi-class classification. Beyond this, visualization of the tSNE clustering suggested that the disease
severity can be captured and schizoaffective disorder (SAD) may be separated into two subtypes. SAD cluster1
has significantly higher Positive And Negative Syndrome Scale (PANSS) scores than SAD cluster2 in PANSS neg-
ative2 (emotional withdrawal), general2 (anxiety), general3 (guilt feelings), general4 (tension).
Conclusions: The proposed deep classification and clustering framework is not only able to identify psychiatric
disorders with high accuracy, but also interpret the correlation between brain networks and specific psychiatric
disorders, and reveal the relationship between them. This work provides a promising way to investigate a spec-
trum of similar disorders using neuroimaging-based measures.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

At present, psychiatric disorders are diagnosed based on symptoms
and course of illness, according to the classifications in the Diagnostic
and Statistical Manual of Mental Disorders (APA, 2013; Tandon et al.,
2009). Finding the biological or physiological biomarkers, rather than
purely relying on behavioral symptoms and signs, might provide a
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more stable and precise diagnosis. In addition, biomarkers could inform
the type, timing and course of interventions, and they could allowdisor-
ders to be subtyped based on physiological criteria, creating a more
personalized approach to psychiatric treatments. However, identifying
biomarkers using current methods is challenging (Singh and Rose,
2009). Long conceptualized as distinct diagnostic categories, major
psychotic disorders, consisting of schizophrenia (SZ), bipolar disorder
with psychosis (BDP), and schizoaffective disorder (SAD), share
substantial biological features in common as implicated by converging
lines of evidence from genetic, molecular, histological, and neuroimag-
ing studies (Clementz et al., 2020; Tamminga et al., 2013; Tamminga
et al., 2014). Consequently, to improve diagnostic and treatment preci-
sion, it is essential to revise the classification of these disorders based on
molecular/biomarker data rather than merely base on symptoms on
clinical phenomenology.
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The Bipolar-Schizophrenia Consortium on Intermediate Phenotypes
(B-SNIP study), a multi-site study of SZ, BDP and SAD that measured
over 50 biomarkers across multiple domains in a standardized manner,
provides a unique window into psychotic illnesses (Tamminga et al.,
2013). Among other issues, the B-SNIP project investigated the follow-
ing questions: a) which are the most discriminative biomarkers associ-
ated with a specific DSM disorder; b) which diagnostic groups (e.g., SZ,
BDP, SAD, and HCs) are most separated from one another. Many novel
data-driven methods have been proposed and utilized in B-SNIP
resting-state functionalMRI (rs-fMRI), to seek innovative diagnostic im-
aging biomarkers (Clementz et al., 2020; Du et al., 2015).We formulated
the following two hypotheses. Hypothesis 1: The use of well-trained
data-driven methods on the B-SNIP fMRI data will be more sensitive
and specific in differentiatingmultiple DSM diagnostic groups. Hypoth-
esis 2: Individual differences in the subcortical area such as the hippo-
campus, amygdala, insula and cortical area including the anterior
cingulate cortex and prefrontal gyrus may play an essential role in dif-
ferentiating SZ, BDP, SAD and healthy controls (Downar et al., 2016;
Yu et al., 2016). Several previous studies on B-SNIP data also examined
dynamic functional network connectivity. However, challenges exist
when applying traditional classification and clustering methods to
multi-class data (Du et al., 2020).

Deep learning models have recently made significant advances in
classification, outperforming regular machine learning classification
models in a range of sample sizes and multiple problem domains, in-
cluding psychiatry (Durstewitz et al., 2019; LeCun et al., 2015; Abrol
et al., 2021; Yan et al., 2018). The essence of deep learning methods is
their ability to extract features automatically through multiple layers.
Their power of automatic feature learning and extraction depends on
both big data and high computational power. Previous work using 389
structural MRI data sets from SZ and HC showed that class separation
performance improved with the addition of more layers, and that
deeper networks better separated patients and control groups on both
training and validation data (Plis et al., 2014). In the same study, despite
not providing the algorithmwith any information about severity during
the model fitting stage, the disease severity of Huntington's disease
was well captured. The findings indicate such flexible models can
go well beyond simple prediction, providing new information and
visualization of complex relationships in the data. Besides, the re-
cently proposed multi-scale convolutional recurrent neural network
(MsRNN) model is an excellent solution for solving the 2-class fMRI
classification problem (Yan et al., 2019). The model achieved high
accuracy in both multi-site pooling and cross-site classification
tasks using time courses as input. Besides, the leave-one-feature-
out approach can identify the most discriminative schizophrenia-
related brain networks, which were consistent with the previous
clinical study. These results highlight the potential of deep learning
and support the need for models that can capture the complexity of
mental illness.

The clustering task is challenging but crucial in investigating the
relationship between different psychiatric disorders (Drysdale et al.,
2017; Xie et al., 2016; Zeng et al., 2013; Yao et al., 2020). When the
signal-noise-ratio is low, the models are likely to be misled by noise or
by low-level features (e.g., sites, age, gender), which are not of primary
interest for the study of psychiatric disorders. To prevent the network
from focusing on such low-level information, adding constraints to
the optimization function is essential. The constraints should:
a) encourage distances between data points in the new feature space
to be similar to distances in original space; b) maximize the
information-theoretic dependency between data and their predicted
discrete representations. For fMRI data, because of the low signal-
noise-ratio, using whole-brain connectivity features for clustering is
challenging and cannot always obtain satisfying performance. Deep
learning has an advantage in extracting the features from low-level to
high-level. Therefore, we propose to use the supervised network for
the guidance of the feature extraction, then use the extracted hidden
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layer features for further clustering. In this way, noisy confounds
(such as age, gender, site effects) are inhibited for better clustering.

In this work, we propose a deep classification and clustering frame-
work. An advancedMsRNNwas first improved for 4-class classification.
The leave-one-feature-out method is used for discovering themost dis-
criminative brain networks. The extracted feature representations by
MsRNN are further used for clustering to visualize the relationship be-
tween different psychiatric disorders.

2. Materials and methods

Fig. 1 presents an overview of the proposed deep classification and
clustering framework. After preprocessing the resting-state fMRI data
using standard procedure, 693 subjects from B-SNIP study were se-
lected for further analysis (Du et al., 2015; Tamminga et al., 2013).
Time courses for each subject were extracted using a spatially
constrained ICA approach called group information guided ICA (GIG-
ICA) (Du and Fan, 2013). Hence each subject was then represented
by the TC features (No. time points * No. ICs). The improved MsRNN
was directly applied to the TCs to identify four different types of psy-
chiatric disorders. The framework consists of three functions: Fig. 1a
is the classification function for accurate diagnosis of psychiatric dis-
orders; Fig. 1c is the interpretation for biomarker discovery; Fig. 1b is
the clustering for comparing group distances among psychiatric dis-
order groups.

2.1. Image acquisition

In this study, we analyzed resting-state fMRI data of 693 subjects, in-
cluding 229 HCs, 176 SZ patients, 140 BDP patients, and 129 SAD pa-
tients from the multi-site B-SNIP study (Tamminga et al., 2013).
Table 1 lists the demographic and clinical information of all 693 sub-
jects. The scanning period for the rest state fMRI data collection was
~5 min for all subjects. The detailed scanning information for each site
is shown in Supplementary Table S1. All subjects provided informed
consent and were clinically stable. They were taking stable medications
for at least 30 days at the time of the study. During the scanning, par-
ticipants were asked to rest with their eyes open and to stay awake.
Patients were classified diagnostically using DSM-IV-TR criteria
ascertained using the SCID (Spitzer et al., 2002).

2.2. Data preprocessing and IC extraction

The rsfMRI data were preprocessed with the Data Processing Assis-
tant for Resting-State fMRI (DPARSF) toolbox (Yan and Zang, 2010)
based on the statistical parametric mapping software (SPM https://
www.fil.ion.ucl.ac.uk/spm/). The first six volumes of each scan time se-
ries were discarded to ensure the magnetization equilibrium. Then the
remaining images were slice-time corrected and realigned to the first
volume for head-motion correction. For each subject, the translation
of head motion was less than 3 mm, and the rotation of head motion
did not exceed 3° in all axis through the whole scanning process. Be-
sides, the mean framewise displacement (FD) for HC, SZ, BDP, SAD
groupswas compared. Themean FDhas no significant groupdifferences
between the four groups. Subsequently, the images were spatially nor-
malized to the Montreal Neurological Institute (MNI) EPI template
(Friston et al., 1995), resliced to 3 mm × 3 mm × 3 mm voxels, and
smoothed with a Gaussian kernel with a full-width at half-maximum
(FWHM) of 8 mm.

Next, the group ICA of fMRI Toolbox (GIFT, https://trendscenter.org/
software/gift/) was used to analyze the rsfMRI data (Calhoun and Adali,
2012; Calhoun et al., 2001). Subject-specific data reduction by principal
component analysis (PCA) retained 150 principal components (PCs) by
preserving the variance higher than 99% using a standard economy-size
decomposition (Allen et al., 2011; Erhardt et al., 2011; Liu et al., 2010).
The Infomax algorithm (Bell and Sejnowski, 1995) was then repeated
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Fig. 1. The overview of the deep classification and clustering framework. The data were preprocessed using standard procedure and then GIG-ICA for decomposition. (a) classification for
accurate diagnosis of psychiatric disorder; (b) tSNE clustering for discovering the similarity and differences between different psychiatric disorder groups; (c) the leave-one-feature-out
method for discovering the most discriminative features.
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20 times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso) and
the centroid run was selected to improve the reproducibility of the de-
composition, resulting in 100 group independent components (ICs). In-
dividual subject spatialmaps and time courseswere back-reconstructed
using GIG-ICA run on each subject and initialized with the group maps
(Du and Fan, 2013). This approach has been shown to be robust to arti-
facts and outperforms a single-subject ICA-based de-noising approach
(Du et al., 2016). 54 ICs were characterized as intrinsic connectivity net-
works (ICNs) after removing the ICs corresponding to physiological,
movement-related or imaging artifacts, and their spatial maps (SMs)
are listed in the Supplementary file Fig. S1. Nuisance covariates were
all regressed out (Fox et al., 2005; Satterthwaite et al., 2013; Yan et al.,
2013). Next, the time courses were stacked to form a matrix with di-
mensions of [No. Subjects] × [No. Time courses] × [No. Independent
components] which was then used to calculate the functional network
connectivity (FNC)matrix or to train theMsRNNmodel directly. Two co-
variates (age and gender) which may have potential confounding ef-
fects were also regressed out.
2.3. MsRNN for supervised classification

As shown in Fig. 1, the rsfMRI data were analyzed using group and
back-reconstructed using GIG-ICA to acquire the respective indepen-
dent component and time courses. The MsRNN model received time
courses directly as the input. The multi-scale spatial features were ex-
tracted from the TCs by using three different scales of convolutional
Table 1
Demographics and clinical details of all 693 subjects.

Categories HC
(n = 229)

SZ
(n = 176)

BDP
(n = 159)

SAD
(n = 129)

Age (year) 38.3 (12.5) 35.2 (11.9) 36.1 (12.5) 36.5 (12.2)
Gender (M/F) 98/131 123/53 52/107 57/72
PANSS (Positive) None 15.9 (6.5) 12.4 (4.8) 18.1 (5.6)
PANSS (Negative) None 15.7 (6.9) 11.6 (4.0) 15.4 (5.1)
PANSS (General) None 30.4 (11.1) 28.0 (9.1) 34.3 (10.4)
PANSS (Total) None 62.0 (22.0) 52.0 (15.6) 67.5 (19.1)
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filters. A gated recurrent unit (GRU)modulewas then applied to extract
the temporal information, and the averaged layer was further used for
integrating the temporal information throughout (Yan et al., 2019).

2.3.1. Multi-scale convolutional layer
Multi-scale convolution layers are very helpful in extracting and in-

tegrating features from different scales (Yan et al., 2019). Thereby dif-
ferent scales (from seconds to minutes) of brain activity can be
captured by using multi-scale convolutional layers. To synchronously
capture the spatial correlation between brain regions, 1D convolutional
filters whose length equals the number of ICs was applied. The width of
the 1D convolutionalfilterswas drawn froma logarithmic insteadof lin-
ear scale. Therefore, multiple scales of convolutional filters, including
54*2, 54*4, and 54*8, were used in the experiment. 54 is the number
of ICs, [2, 4, 8] are different time spans. The architecture allows the net-
work to extract multi-scale spatial information from the fMRI time
courses. The outputs of the filters were then concatenated among the
depth axis. Max-pooling operation was then performed along the time
dimensions. The outputs of themax-pooling layer were then submitted
to the following GRU layers.

2.3.2. Densely connected GRU layer
Gated recurrent unit was designed to solve the gradient exploding/

vanishing problem when training time sequence model (Chung et al.,
2014). The dense connection which connects different layers in a
feed-forward way was also been proved as a solution for maintaining
gradients (Huang et al., 2017). In this work, a two-layer densely con-
nected GRU was used for integrating high-level temporal information
from fMRI. The size of the GRU hidden state was set at 32.

2.3.3. Averaged layer
Even with the best experimental fMRI design, it is not possible to

equalize the random thoughts of subjects during resting-state fMRI
scanning because they depend on too many unobservable subject-
specific factors. Similarly, the time series across subjects are not syn-
chronized (Morioka et al., 2020). Therefore, we combined the fMRI
steps by averaging all of the GRU outputs. In this way, all activities of
the brain during scanning were leveraged to obtain better classification
performance.

http://www.cis.hut.fi/projects/ica/icasso
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In summary, theMsRNN classification model consists of multiple-
scale Conv1D layers, stacked GRU layers that are densely connected
in a feed-forward manner, an averaged layer that integrates the
context of thewhole sequence, and fully-connected layers.More detailed
information about the MsRNN model can be found in Supplementary
Fig. S2.

2.4. Estimating the discriminative power of independent components
(leave-one-feature-out)

The ultimate goal of fMRI classification studies is to identify a collec-
tion of statistical features that can serve as reliable imaging biomarkers
for disease diagnosis and are reproducible across multiple datasets.
Despite extraordinary classification performance in some cases, the
lack of interpretability often restricts the application of deep learning
methods (Kim et al., 2015; Kohoutová et al., 2020; Yan et al., 2019).
Some previously proposed models, such as LRP (Yan et al., 2017),
weight-activation product (Polyn et al., 2005), and leave-one-feature-
out (Yan et al., 2019), provide good strategies for model interpretation.
As for leave-one-feature-out, the basic idea is that the features whose
elimination leads to themost significant damage to classification perfor-
mance should be regarded as the top contributing features. MsRNN
learns dynamic information and temporal dependency from the time
courses. If one IC's time course is replaced with its average value,
there would be no useful temporal information that can be learned by
MsRNN. More specifically, each subject is representedwith a T*Dmatrix,
where T is the length of time courses, and D is the number of indepen-
dent components (ICs). A specific element in thematrix can be denoted
by eti. To quantify the classification contribution of the ith IC, we replace
the time courses of ith IC with its averaged value (∑t=1

T eti)/T while
retaining the other ICs' time courses. Since the MsRNN model learns
temporal dependency of BOLD signals, this is equivalent to eliminating
the contribution of the ith component. A detailed description of the pro-
cedure can be found in Supplementary methods.

All the testing samples are processed in the same way and subse-
quently fed to the trainedMsRNNmodel. The classification performance
of the models trained with reduced features may decrease compared to
those using all features. The variation of the classification performances
(e.g., accuracy, sensitivity, specificity) when removing ith dimension are
recorded and sorted. The features which maximize the decrease of the
classification performance are further selected as the most discrimina-
tive features. Specifically, the 693 samples were randomly split into
five folds. 554 samples (four folds) were used for optimizing the param-
eters ofMsRNN, and 139 samples (one-fold) were used for further find-
ing the contribution of each IC during each cross-validation. The
procedures are as follow: 1) After optimizing the trained model with
554 samples, the parameters of the trained model were saved; 2) The
time courses of 139 subjects without removing any component were
fed to the model to obtain a baseline classification performance;
3) The 139 subjects which have removed the contribution of one spe-
cific IC were fed to the model to obtain the classification performance
repeatedly. The change of accuracy/precision/recall when removing
specific features was recorded and sorted; 4) Repeat step 3 until each
IC has been removed once.

2.5. Unsupervised clustering from the selected feature representations

Data clustering based on the original fMRI data is exceptionally chal-
lenging because the brain fMRI is high dimensional and low in signal-
noise-ratio. Consequently, the number of dimensions must be reduced
to avoid the “curse of dimensionality”. Another challenge is that the
confounds may mislead the clustering orientation. Clustering results
are dependent on the dimensional representation selected for analysis.
However, there is no established standard for selecting appropriate
fMRI dimensional representations. The tSNE approach embeds high-
dimensional data into a low-dimensional space while preserving the
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pairwise distances of the data points (Maaten and Hinton, 2008). To
overcome the effects of confounds (e.g., age, gender, sites) which may
mislead the unsupervised clusteringmethod.we first extracted the out-
put of the last hidden layer of the MsRNN, then the extracted feature
representations were submitted to the tSNE model for unsupervised
learning.

2.6. Model training

The time courses of ICs described above were used as the inputs for
training the MsRNN model. The models are trained by minimizing the
cross-entropy loss using Adam optimizer. The training batch size is set
as 32. The learning rate started from 0.001 and decayed after each
epoch with a decay rate of 10−2. To improve the generalization perfor-
mance of the model and overcome overfitting, dropout (dropout=0.5)
and L1,2-norm regularization (l1=5e-4, l2=5e-4)were also applied for
regulating the model parameters. The training process was stopped
when the validation loss stopped decreasing for 50 epochs or when
the maximum epochs (1000 epochs) had been executed. The interme-
diate models which achieved the highest accuracy on the validation
dataset were reserved for testing (Yan et al., 2019). Besides, the pro-
posed models are implemented on the platform of Keras (https://
keras.io/) and ScikitLearn (https://scikit-learn.org/). All the above
models were implemented on a desktop computer (Intel(R) Xeon
(R) CPU E5-1650 v4 @ 3.60GHz, 6 CPU cores) with a single GPU (12GB
NVIDIA GTX TITAN 12GB).

3. Results

3.1. Four-class HC/SZ/BDP/SAD classification

We compared the modified MsRNN model with three classical ma-
chine learning classifiers (SVM (Guyon et al., 2002), Adaboost (Zhu
et al., 2009), and Random Forest (Breiman, 2001)). Note that the three
conventional classification methods usually work on the FNC matrix
computed using the correlation of TCs of selected components instead
of the TCs themselves. As a result, for performance comparison, FNCs
were used as the input of conventional methods while TCs were used
as the input of MsRNN method. In the deep learning MsRNN classifica-
tion frameworks, we used four folds as the training set (10% samples
of the training setwere further selected randomly as validation dataset),
and one-fold as the testing dataset. For conventional classification
models (SVM, Adaboost, and Random Forest), four folds were used for
training and one-fold for testing (Yan et al., 2019). Table 2 is the
confusion matrix of 4-class classification achieved by four methods in
multi-site pooling classification. As shown in Fig. 2, theMsRNN achieved
an accuracy of 46% in 4-class classification task using DSM labels, which
is significantly better than the results obtained by using SVM, Adaboost
and RandomForest. In our experiment, the training time forMsRNNwas
around 1.5 min, while the testing time for a new subject was around
0.1 s. More details about the model complexities are listed in Supple-
mentary Files Table S2-S6.

3.2. Two-class classification using MsRNN (5-fold cross-validation,
average)

To further investigate common and specific impairments of mental
disorders, we compared theMsRNNwith three traditional popular clas-
sifiers (SVM, Adaboost, Random Forest) in two-class classification tasks.
When training the MsRNN model, four folds were as the training set
(10% samples of the training set were further selected randomly as
validation dataset), and one-fold was as the testing dataset. As for con-
ventional classification models, four folds were used for training and
one-fold for testing. Table 3 lists the classification results: the accuracy
of SZ vs. HC was 78.5%, the accuracy of BDP vs. HC was 71.6%, the accu-
racy of SAD vs. HC was 70.4%.

https://keras.io/
https://keras.io/
https://scikit-learn.org/


Table 2
Confusion matrix of four-class classification.

SVM Random Forest

HC SZ BDP SAD HC SZ BDP SAD

HC 153(67%) 28(12%) 18(8%) 30(13%) 196(86%) 26(11%) 5(2%) 2(1%)
SZ 35(20%) 73(41%) 33(19%) 35(20%) 74(42%) 83(47%) 16(9%) 3(2%)
BDP 41(26%) 47(30%) 41(26%) 30(18%) 86(54%) 56(35%) 15(9%) 2(2%)
SAD 31(24%) 30(23%) 29(23%) 39(30%) 75(58%) 43(33%) 7(5%) 4(4%)

AdaBoost MsRNN

HC SZ BDP SAD HC SZ BDP SAD

HC 148(65%) 27(12%) 33(14%) 21(9%) 144(63%) 35(15%) 38(17%) 12(5%)
SZ 46(26%) 66(38%) 39(22%) 25(14%) 34(19%) 80(45%) 43(25%) 19(11%)
BDP 51(32%) 45(28%) 49(31%) 14(9%) 33(21%) 40(25%) 74(47%) 12(7%)
SAD 47(36%) 33(26%) 30(23%) 19(15%) 36(28%) 41(32%) 30(23%) 22(17%)

Note: a(b%): a is the amount of accurately classified data, b% is the ratio of the accurately classified data. For instance, using SVM classifier, 67% HC were predicted correctly. 12% HCwere
misclassified as SZ. True positives are on the diagonal, false negatives are on the upper diagonal. The classification results of MsRNN are well above chance.

Fig. 2. Four-class classification comparison. The MsRNN achieved significantly higher classification performance comparing the other machine learning methods. The bars represent the
averaged value of accuracy, precision and recall fromall 5-fold cross-validations. */** denote respectively that the proposedMsRNN is significantly better than the conventionalmodelwith
P value = 0.05/0.01.
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In general, compared with the traditional machine learning
methods, MsRNN achieved higher accuracy by balancing sensitivity
and specificity. Notably, in SAD vs. HC classification task, the SVM per-
formed better than the MsRNN in accuracy and specificity. However, it
was not able to balance the sensitivity and specificity effectively.

3.3. Estimating the most discriminating independent components

Here, we used the leave-one-feature-out approach, which leaves
one IC's time course out, and used the remaining 53 IC's time course
to train the model. After that, we compared the alteration of classifica-
tion by looping all 54 ICs. The trained 4-class classification and 2-class
Table 3
Two-class classification comparison.

Methods SZ vs. HC BDP vs. HC SAD vs. HC

ACC SEN SPE ACC SEN SPE ACC SEN SPE

SVM 74.8 65.3 82.1 70.4 47.8 86.0 71.2 38.8 89.5
Random Forest 74.8 58.5 87.3 69.3 35.2 93.0 67.9 22.5 93.4
AdaBoost 73.0 68.2 76.9 62.4 49.1 71.6 65.9 45.7 77.3
MsRNN 78.5 74.4 81.6 71.6 65.4 76.0 70.4 58.9 76.9

The best classification performance of each column is in bold.
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classification models were all analyzed and interpreted one by one
using the leave-one-feature-out method. The top five components
that contributed most to the respective classification tasks are shown
in Fig. 3 and Table 4. The results demonstrated that the discriminating
regions that contribute to the 4-class classification were mainly located
in hippocampus, supplementary motor area, paracentral lobule,
precentral, and insula. The middle frontal gyrus was specific for SZ/HC
classification. The cerebellum was specific for BDP/HC classification.
The right middle temporal gyrus, inferior frontal gyrus and paracentral
lobule were specific for SAD/HC classification.

3.4. Clustering using the feature representation extracted using MsRNN

Fig. 4(a) shows the results for clustering psychiatric disorders based
on DSM label using tSNE. Interestingly, the SAD group separated into
two distinct clusters. One is the top left cluster (SAD Cluster 1), the
other (SAD Cluster 2) is mixedwith SZ and BDP groups. We then exam-
ined clinical psychosis rating scores in these two SAD clusters. Fig. 4(b, c,
d) shows the PANSS positive, PANSS negative and PANSS total score
values respectively. The 30-item PANSS, firstly proposed by Kay et al.,
is conceived as an operationalized, drug-sensitive instrument that pro-
vides a balanced representation of positive and negative symptoms and
gauges their relationship to one another and global psychopathology

Image of Fig. 2


Fig. 3. (a) Top 5 contributing components (spatial map and time courses) for 4-class classification. (b) Top 5 contributing components (spatial map and time courses) for SZ/HC
classification; (c) Top 5 contributing components (spatial map and time courses) for BDP/HC classification; (d) Top 5 contributing components (spatial map and time courses) for
SAD/HC classification.The discriminating regions that contribute to the 4-class classification are mainly located in hippocampus, supplementary motor area, paracentral lobule,
precentral, and insula. The middle frontal gyrus is specific to SZ vs. HC classification. The cerebellum is specific for BDP vs. HC classification. The right middle temporal gyrus, inferior
frontal gyrus, and paracentral lobule are specific for SAD vs. HC classification.
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(Kay et al., 1987). The PANSS scale is an evaluation scale of 30 disparate
items from 1 to 7 for psychopathological symptoms observed in pa-
tients presenting psychotic syndromes, especially schizophrenia states.
Three scores obtained with this evaluation tool are generally calculated
for evaluating three dimensions of the syndrome: positive, negative,
and general psychopathology, as part of a categorical or dimensional
perspective. As shown in Fig. 5, SAD cluster1 has significantly higher
scores than SAD cluster2 in PANSS negative2 (emotional withdrawal),
general2 (anxiety), general3 (guilt feelings), general4 (tension). Be-
sides, to minimize the effects of confounds, we mapped the age, gen-
der and site information to the tSNE map. As shown in Fig. 6, these
146
confounds were not systematically associated with any groups,
showing a random pattern.

4. Discussion

Lacking clinical biomarkers, the symptomatic overlap between dif-
ferent psychiatric disordersmakes diagnosis challenging. Using compu-
tational strategies to discover the most informative biologic fingerprint
is a promising strategy to uncover mechanisms in psychosis. Investiga-
tions of symptom-related psychiatric disorders using the temporal in-
formation from fMRI are rising (Dvornek et al., 2017; Yan et al., 2019),

Image of Fig. 3


Table 4
Top 5 components contributing to the MsRNN classification tasks.

Note: RMTG+ IFG: rightmiddle temporal gyrus+inferior frontal gyrus. The blue cells are the common components shared by
various disorders. The Arabic numbers in the bracket are the indexes of the components.

Fig. 4. (a) The clustering results of psychiatric disorders based on DSM label; (b) PANSS total; (c) PANSS positive; (d) PANSS negative. Notes: The healthy controls have no PANSS scores,
values are set at 0. The figure shows that the gradients are from low to high, and a different but similar gradient appears in the separate SAD clusters.
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Fig. 5. PANSS comparison between SAD subtypes. */** denote respectively that there exists a significant difference between two groups with P = 0.05/0.01. PANSS_n2 represents
emotional withdrawal, PANSS_g2 represents anxiety, PANSS_g3 represents guilt feelings, PANSS_g4 represents tension.
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and may lead to further insights into the underlying brain biology of
psychiatric disorders. In this work, we propose a framework that com-
bines the classification and clustering approaches for classification,
interpreting disease-related networks, and discovering the relation-
ships among various psychiatric disorders. A large dataset that consists
of 693 subjects was used for analysis. By using the most advanced
MsRNNmodel, an accuracy of 46%was achieved in 4-class classification,
significantly above chance. Using a leave-one-feature-out approach, the
most discriminative brain networks for specific psychiatric disorder di-
agnoseswere identified. Also, the tSNE clustering approachwas used for
visualizing the relationships among multiple psychiatric disorders. To
the best of our knowledge, this is the first framework that incorporates
classification, interpretation, and clustering tasks at the same time using
TC features.

Comparingwith the traditional methods such as SVM, Adaboost and
Random Forest, MsRNN achieved higher classification accuracy while
balancing precision and recall metrics. Based on the confusion matrix
we do not see a situation inwhich one category is severelymisclassified.
The confusion matrix also indicates the difficulty level of the classifica-
tion tasks. HC is the most straightforward category to be identified,
followed by BDP and SZ. SAD is the most challenging category to
Fig. 6. tSNE map of the confounds effects. (a) site effects; (b) gender effects; (c) age effects. The
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identify. SAD is more likely to bemisidentified as SZ. Our finding is con-
sistent with the choice to assign SAD into the same diagnosis class as SZ
in the current DSM-5 (Heckers et al., 2013; Malaspina et al., 2013). We
also used 2-class classification tasks to identify disorder-specific brain
networks. Results show the accuracies for MsRNN in SZ vs HC is 78.5%,
BDP vs. HC is 71.6%, SAD vs. HC is 70.4%. Based on this, the SZ is most
easily distinguished from HC, while SAD and BDP were more challeng-
ing to separate from HC.

There has been increasing interest in identifying disorder-related
brain regions following biologic classification. The leave-one-feature-
out results demonstrate that the discriminating regions that contribute
to the 4-class classification are mainly located in hippocampus, supple-
mentarymotor area, paracentral lobule, precentral, and insula. Themid-
dle frontal gyrus is specific to SZ vs. HC classification. The cerebellum is
specific for BDP vs. HC classification. The right middle temporal gyrus,
inferior frontal gyrus, and paracentral lobule are specific for SAD vs.
HC classification. Some previous studies support the role of the insula
(Mikolas et al., 2016; Wylie and Tregellas, 2010), hippocampus
(Heckers, 2001), cerebellum (Andreasen and Pierson, 2008), supple-
mentary motor area (Northoff et al., 2020), and middle frontal gyrus
(Kikinis et al., 2010) for SZ identification. The cerebellum plays an
confounds are not systematically associated with any groups, showing a random pattern.

Image of Fig. 5
Image of Fig. 6
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important role in psychiatric disorders, such as bipolar disorder. A
growing body of evidence showed structural (DelBello et al., 1999;
Lippmann et al., 1982) and functional (Liu et al., 2012; Wang et al.,
2015) abnormalities of cerebellum in bipolar disorder. For example,
Shinn et al. found reduced cerebrocerebellar functional connectivity in
somatomotor, ventral attention, salience, and frontoparietal control
networks in patients with BDP (Shinn et al., 2017), and Yates et al.
found a greater rate of cerebellar atrophy in patients with BDP (Yates
et al., 1987). As for motor areas, Northoff et al. demonstrated that
psychomotor mechanisms and their underlying biochemical modu-
lation are operative in both healthy subjects as well as in MDD,
BDP, and SZ subjects, the only difference consists in the fact that
these mechanisms are abnormally balanced and thus manifest in ex-
treme values in psychiatric disorders. Psychomotor mechanisms and
their biochemical modulation can be considered paradigmatic exam-
ples of a dimensional approach as suggested in RDoC and the re-
cently introduced spatiotemporal psychopathology (Northoff et al.,
2020).

As for group relationships, our results separated SAD into two clus-
ters, which may hint at different subtypes. One is clearly demarcated
(SAD Cluster1), and the other (SAD Cluster2) is interspersed among
other psychiatric disorders. Whether SAD should be considered a sepa-
rate category and what is the relationship among these disorders is still
controversial (Keshavan et al., 2011; Tamminga et al., 2013). In our case,
SAD cluster1 has significantly higher scores than SAD cluster2 in PANSS
negative2 (emotional withdrawal), general2 (anxiety), general3 (guilt
feelings), general4 (tension).

Several aspects of the current work may need further refinement in
the future. As for the clustering approaches, clustering is still a challeng-
ing problem because the clustering directions/clues are always affected
bymany effects such as gender, age, and sites. Therefore, effective guid-
ance is necessary for clustering. In the future, a more advanced pure
clustering method should be developed. Deep clustering may be a
feasible solution (Chang et al., 2017; Xie et al., 2016). Another strat-
egy might use an ensemble of approaches (e.g., multi-model and
multi-modalities) to achieve even better classification performance.
Further studies of these subclusters as related to prognostic and
retreatment-response profiles, or biotype profiles (Clementz et al.,
2015), would provide more evidence about SAD subtypes. In addi-
tion, the use of dynamic functional connectivity which can both cap-
ture the spatial and temporal information from the fMRImay provide
additional insights into the data. In the future study, we plan to use
dynamic functional connectivity as the input to a recurrent neural
network model.

In summary, to the best of our knowledge, this is the first attempt
to integrate recurrent neural network, clustering, and interpretation
for 4 groups based on resting-state fMRI time series. The framework
incorporates the strength of themulti-scale RNNmodel which can ef-
ficiently capture the spatial-temporal features based on time courses
directly, and then use a leave-one-feature-out approach for interpre-
tation. The proposed deep classification and clustering framework
can reveal the relationships among multiple psychotic psychiatric
disorders and provides a promising approach that can be used to in-
vestigate a spectrum of similar disorders using neuroimaging-based
measures.
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