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Abstract—Multi-site collaboration, which gathers together 

samples from multiple sites, is a powerful way to overcome the 

small-sample problem in the neuroimaging field and has the 

potential to discover more robust and reproducible biomarkers. 

However, confounds among the datasets caused by various site-

specific factors may dramatically reduce the cross-site 

reproducibility performance. To properly remove confounds 

while improving cross-site task performances, we propose a 

maximum classifier discrepancy generative adversarial network 

(MCD-GAN) that combines the advantages of generative models 

and maximum discrepancy theory. The mechanisms of MCD-

GAN and how it harmonizes the dataset are visualized using 

simulated data. The performance of MCD-GAN was also 

compared with state-of-the-art methods (e.g., ComBat, cycle-

GAN) within Adolescent Brain Cognitive Development (ABCD) 

dataset. Result demonstrates that the proposed MCD-GAN can 

effectively improve the cross-site gender classification 

performance by harmonizing site effects. Our proposed 

framework is also suitable for various classification/prediction 

tasks and is promising to facilitate the cross-site reproducibility 

of neuroimaging studies. 

 
Clinical Relevance— This work provides an efficient method 

for removing sites effects and improving reproducibility in 

large-cohort neuroimaging studies. 

I. INTRODUCTION 

Multi-site neuroimaging collaboration is a powerful way to 
overcome the small-sample problems by gathering samples 
from multiple datasets. However, data from different sites are 
often acquired using different vendors, protocols, or software 
versions. Inconsistencies can arise from the magnetic 
resonance imaging (MRI) machine’s field strength, gradient 
non-linearity, time-of-day, head motion [1], and other factors 
such as population and recruitment difference, thus 
compromising consistency and reproducibility of the 
downstream analysis across studies. Meta-regression studies 
demonstrate that sample size significantly moderated the 
pooled classification performances, with lower accuracy 
associated with a larger sample size [1]. Hence, properly 
removing the task-irrelevant confounds is essential for 
improving the outcomes of large-cohort studies. 

Non-biological confounds often have a prior unpredictable 
distribution, making it challenge to be properly removed. The 
popular harmonizing methods can be divided into two 
categories: dataset harmonization and domain adaptation. 
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The core difference between the two categories lies in whether 
the specific task (e.g., classification, regression) is taken into 
account when harmonizing. Data harmonization approaches, 
such as residual harmonization, ComBat [2], Neuroharmony 
[3], usually estimate the distribution of confounds and remove 
them while ignoring the subsequent tasks such as group 
classification. For example, ComBat performs a Bayesian 
regression that corrects the measurements from different 
samples with additive and multiplicative terms. Therefore, 
dataset harmonization is flexible to multiple downstream 
tasks. However, if the confound to remove was not accurately 
estimated, or the confound has a strong correlation with the 
downstream task, data harmonization may even degrade the 
performance of downstream cross-site performances. Domain 
adaptation trains task-specific models while harmonizing the 
feature by mapping the features into a shared task-specific 
subspace [4, 5]. Domain adaptation methods can theoretically 
guarantee that the model trained on the source domain will 
achieve improved performance on the target domain. 
However, adapted domains are often task-specific and not 
intuitive for interpretation because of the mapping (mostly 
non-linearly) from original space to task-related low-
dimensional subspace. 

In addition, compared to conventional harmonizing 
methods which usually use linear models for confound 
estimation, deep learning-based models are often more 
efficient in capturing high-level feature relations using 
multiple non-linear layers. Deep generative adversarial model 
is theoretically an ideal solution for multi-site harmonizing due 
to its adversarial training strategy. The idea has been applied 
to both the data harmonization and domain adaptation fields 
[4, 6]. For example, Bashyam et al., applied cycle-GAN, first 
proposed to solve style transfer problems[7], to MRI dataset 
for aligning distributions between the source domain and 
target domain. By learning an unsupervised image to image 
canonical mapping from diverse datasets to a reference domain 
using generative deep learning methods, the cycle-GAN 
model can reduce confounding data variation while preserving 
semantic information. Guan et al. designed a deep adversarial 
neural network to harmonize the MRI scans from different 
Alzheimer’s disease studies[4]. However, cycle-GAN cannot 
guarantee better performance on a specific task. Integrating the 
concept within the maximum classifier discrepancy method 
proposed by Saito et al., [5] can be a remedy. 
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In this work, we aim to combine the advantage of cycle-
GAN (data harmonization) with those of maximum 
discrepancy classifiers (domain adaptation) techniques and 
propose a new “harmless” harmonization method MCD-GAN. 
The proposed MCD-GAN has two main highlights: 1) 
harmonizing the datasets from different scanners without 
mapping the original features to a lower-dimensional 
subspace; 2) improving task-specific performance. We first 
systematically introduce and compare the current popular 
harmonizing methods including ComBat, cycle-GAN, and 
maximum discrepancy classifiers. Then the architecture and 
mechanisms of the proposed MCD-GAN were described in 
detail. We simulated data to visualize the mechanism of the 
proposed MCD-GAN. After that, the performance of MCD-
GAN was validated within the Adolescent Brain Cognitive 
Development (ABCD) dataset. 

II. METHODS AND MATERIALS 

A. MCD-GAN network 

Fig. 1 is an overview of the proposed MCD-GAN 

framework which has two main modules: cycle-GAN and two 

classifiers. The cycle-GAN consist of two generators 𝐺𝑠→𝑡 , 
𝐺𝑡→𝑠, and respective adversarial discriminators 𝐷𝑠 and 𝐷𝑡 . 𝐷𝑠 

encourages 𝐺𝑠→𝑡  to generate data from the source domain, 

and vice versa for 𝐷𝑡  and 𝐺𝑡→𝑠. Two classifiers 𝐹1 and 𝐹2 are 

then trained on the source domain. As for maximum classifier 

discrepancy, the unlabeled target domain samples are sent to 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1  and 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2  to get respective predicted 

labels. The discrepancy of 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1  and 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2  are 

then obtained. Two main steps are iteratively conducted to 

optimize the MCD-GAN model. In the first step, two 

classifiers are trained to maximize the discrepancy of the  

𝐺𝑡→𝑠 outputs (red lines) while maintaining the classification 

performance on the source domain (green line). Second, the 

generator which maps the samples from the target domain to 

the source domain was optimized to minimize the discrepancy 

of the classifiers on the target dataset.  
 

B. MCD-GAN loss functions 

Loss functions play a key role in optimizing the deep 

learning model. The loss functions of MCD-GAN consist of 

cycle-GAN loss, classification loss, and max-discrepancy 

loss. Details of the losses are as follows: 

Adversarial loss: We assume that cycles in both directions 

help perform global domain alignment by learning features in 

the adaptation process, and employ the following source 

domain loss 𝐿𝑠(𝐺𝑠→𝑡 , 𝐺𝑡→𝑠, 𝐷𝑠)  and the target domain loss 

𝐿𝑡(𝐺𝑠→𝑡 , 𝐺𝑡→𝑠, 𝐷𝑡): 
𝐿𝑠(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑠)

= −𝐸𝑥𝑠~𝐷𝑠 log 𝐷𝑠(𝑥𝑠) − 𝐸𝑥𝑡~𝐷𝑡 log (1 − 𝐷𝑠(𝐺𝑡→𝑠(𝑥𝑡)))                            (1) 

𝐿𝑡(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑡)

= −𝐸𝑥𝑡~𝐷𝑡 log 𝐷𝑡(𝑥𝑡) − 𝐸𝑥𝑠~𝐷𝑠 log (1 − 𝐷𝑡(𝐺𝑠→𝑡(𝑥𝑠)))                            (2) 

where 𝐷𝑠  and 𝐷𝑡  are discriminators corresponding to the 

source and target domains. 𝐺𝑠→𝑡  is the generator mapping 

source features to the target domain, 𝐺𝑠→𝑡 is the generator to 

map target features to the source domain. 

Cycle-consistency loss: The cycle consistency losses were 

also applied to regularize the two generators. The intuitive 

explanation is that if we translate from one domain to the 

other and back again, we should arrive at where we started. 

Therefore, the loss for cycle consistency is as follows: 
𝐿𝑐𝑦𝑐

= 𝐸𝑥𝑠~𝐷𝑠‖𝐺𝑠→𝑡(𝐺𝑡→𝑠(𝑥𝑠) − 𝑥𝑠)‖1 + 𝐸𝑥𝑡~𝐷𝑡‖𝐺𝑡→𝑠(𝐺𝑠→𝑡(𝑥𝑠) − 𝑥𝑡)‖1          (3) 

Hereafter, the cycle-GAN loss is the weighted sum of the 

adversarial loss and cycle-consistency loss: 
𝐿(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑠, 𝐷𝑡) = 𝐿𝑠(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑠) + 𝐿𝑡(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑡) + 𝝀𝐿𝑐𝑦𝑐 (4) 

where 𝜆 is the hyperparameter to control the ratio between 

adversarial loss and cycle-consistency loss. 

Classification loss: The classifiers are trained on source 

domain samples. The loss function is as follow: 
𝐿𝑐𝑙𝑎𝑠𝑠(𝑥𝑠)

= 0.5 ∗
1

𝐾
∑ 𝐿(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1(𝑥𝑠

𝑘), 𝑦𝑠)
𝐾

𝑘=1
+ 0.5

∗
1

𝐾
∑ 𝐿(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2(𝑥𝑠

𝑘), 𝑦𝑠)
𝐾

𝑘=1
                                                                    (5) 

where 𝐿  denotes the cross-entropy loss and 𝑘  denote the 

number of classes. 

Max classification discrepancy loss: Two deep learning 

classifiers are trained on the original datasets. Similar to Saito 

et al’s work [5], we utilize the absolute values of the 

difference between two classifiers’ probabilistic outputs as 

discrepancy loss: 
𝑑(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1(𝑥𝑠), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2(𝑥𝑠))

=
1

𝐾
∑ |𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1(𝑥𝑠

𝑘) − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2(𝑥𝑠
𝑘)|

𝐾

𝑘=1

                                            (6) 

where the 𝑝1𝑘 and 𝑝2𝑘 denote probability output of 𝑝1 and 𝑝2 

for class 𝑘 respectively. 

C. MCD-GAN training steps 

Step A: First, we pre-train cycle-GAN by minimizing Eq.4 to 

harmonize the source domain and target domain. The 

objective function is as follow: 
min

𝐺𝑠→𝑡,𝐺𝑡→𝑠,𝐷𝑠,𝐷𝑡

𝐿(𝐺𝑠→𝑡, 𝐺𝑡→𝑠, 𝐷𝑠, 𝐷𝑡)                                                                     (7) 

Step B: We train classifiers (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1  and 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2 ) 

using the features generated from the cycle generator 

𝐺𝑡→𝑠𝐺𝑠→𝑡(𝑥𝑠). This is equivalent to training the classifiers on 

the source domain. The optimized classifiers are tested on the 

unlabeled target domain samples which are mapped to the 

source domain using 𝐺𝑡→𝑠 . The discrepancy of the two 

classifiers on unlabeled target datasets are maximized by 

maximizing 𝑑(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2). At the same time,  

Figure 1. Framework of the proposed MCD-GAN. The model contains 

two generative functions 𝐺𝑠→𝑡 , 𝐺𝑡→𝑠 , and associated adversarial 

discriminators 𝐷𝑠  and 𝐷𝑡 . 𝐷𝑠  encourages 𝐺𝑠→𝑡  to translate source 

domain, and vice versa for 𝐷𝑡and 𝐺𝑡→𝑠. Two classifiers 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1 and 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2 are trained on the source domain. 
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the classification performance on the source domain should 

also be maintained. The objective is as follows: 
min

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟11,𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2

{𝐿𝑐𝑙𝑎𝑠𝑠( 𝐺𝑡→𝑠𝐺𝑠→𝑡(𝑥𝑠))

− 𝑑 (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1(𝐺𝑡→𝑠(𝑥𝑡)), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2(𝐺𝑡→𝑠(𝑥𝑡)))}                                (8) 

Step C: We optimize the generator 𝐺𝑡→𝑠  to minimize the 

discrepancy for fixed classifiers. The term denotes the trade-

off between the generator and classifiers. The objective is as 

follows: 

min
Gt→s

𝑑 (𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟1(𝐺𝑡→𝑠(𝑥𝑡)), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟2(𝐺𝑡→𝑠(𝑥𝑡)))                             (9)                         

The above three steps are repeated until convergence. 
 

C. Model implementation 

The proposed models are implemented on the platform 

of Tensorflow (https://www.tensorflow.org/) and ScikitLearn 

(https://scikit-learn.org/). Adam was used as the optimizer 

with an initial learning rate of 10-4. The batch size was set to 

4. The parameter 𝜆 was empirically set to 10. All the above 

models were implemented on the cluster (Intel(R) Xeon(R) 

Gold 6230 CPU @ 2.10GHz, 20 CPU cores) with a GPU card 

(Tesla V100-SXM2-32GB). 
 

D. Data and preprocessing 

Simulated data (Double moon): As shown in Fig. 2(a). 

Double moon data is simulated using Sklearn (https://scikit-

learn.org/stable/). The dataset contains 2000 samples from 

two sites (site 1 and site 2). Each site consists of two 

categories (class 1 and class 2). Site2 is obtained by 

counterclockwise rotating site 1 by 45 degrees. 

ABCD MRI cortical thickness features: As shown in Table 

2, cortical thickness features are included in this work. The 

features are downloaded from the ABCD 

(https://abcdstudy.org/) official website.  

ABCD MRI volumes: As shown in Table I, T1 MRI volumes 

collected using GE and SIEMENS scanners are included. The 

sMRI data were segmented into tissue probability maps for 

gray matter, white matter, and cerebral spinal fluid using 

SPM12. The gray matter images were then warped to standard 

space, modulated, and smoothed using a Gaussian kernel with 

an FWHM = 10 mm. The preprocessed gray matter volume 

images had a dimensionality of 121 × 145 × 121 in the voxel 

space, with the voxel size of 1.5 × 1.5 × 1.5 mm3. 
 

III. RESULTS 

As shown in Fig. 2, the performance of the proposed 
MCD-GAN was compared with ComBat and cycle-GAN 
using a simulated ‘double moon’ dataset.  

 

Before harmonization, the classifier trained on Site 1 
(accuracy=99.7%) cannot perform well on Site 2 
(accuracy=67.8%). ComBat approach changes the scale of 
both source and target domains for harmonization. However, 
the ComBat cannot harmonize the non-linear confounds. 
Cycle-GAN performed better on harmonizing non-linear site 
effects than ComBat. MCD-GAN performed even better than 
cycle-GAN by constraining the samples which are not close to 
decision boundaries.  

Fig. 3 shows the effect of harmonizing methods.  Cortical 
thickness features of each ABCD subject were used for tSNE 
unsupervised clustering and visualization. Before 
harmonization, the samples from GE and SIEMENS can be 
clustered into two groups with a clear boundary. After 
applying harmonization methods (ComBat and cycle-GAN) to 
the cortical thickness features, the site effects are removed. In 
addition, compared to ComBat results, the scale of the 
harmonized features obtained by cycle-GAN is more similar 
to the original features. In other words, the cycle-GAN method 
can better maintain features within the original feature space. 

 GE 
(Discovery) 

 
SIEMENS 
(Prisma) 

Cortical thickness (68 features) 2708 subjects  3072 subjects 

sMRI (121*145*121 voxels) 2708 subjects  3072 subjects 

Gender(F/M) 1291/1417  1431/1641 

Months(mean±std) 118.2±7.6  119.3±7.5 

Figure 2. (a) Double moon simulated dataset and the classifier’s 

boundary (green curves) before harmonization. Two sites of data (site 1 

and site 2) are simulated. Each site consists of two classes (class 1 and 
class 2). Site2 is obtained by counterclockwise rotating Site1. (b) After 

ComBat harmonization; (c) After cycle-GAN harmonization; (d) After 

MCD-GAN harmonization. Notes: “Train ACC” represents the 
classification performance on training dataset (source domain). “Test 

ACC” represents the classification performance on testing dataset 

(target domain). 

Figure 3. Visualization and comparison of data harmonization method 

on ABCD cortical thickness features. (a) before harmonization. (b) 

after ComBat; (c) after cycle-GAN. 

TABLE I. Demographic information 
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Table II shows the classification performance on the 
simulated double moon and ABCD dataset. The results show 
that the proposed MCD-GAN outperforms the compared state-
of-the-art harmonization methods on the cross-site gender-
classification task. 

 

IV. DISCUSSION AND CONCLUSION 

Properly harmonizing site-effected confounds is vital in 
achieving reproducible results in multi-site studies especially 
when data are collected from different sites. Conventional data 
harmonization methods cannot guarantee improved 
performance on specific tasks. Our proposed MCD-GAN has 
advantages in two aspects: 1) compared to conventional data 
harmonization methods, MCD-GAN can guarantee improved 
performance in specific classification tasks; 2) compared to 
conventional domain adaptation methods, MCD-GAN does 
not map the features into a low-dimensional subspace but 
keeps the features in their original space. 

Data harmonization and domain adaptation are two main 
categories of methods for removing confounds. Data 
harmonization methods focus on estimating the distribution of 
the confounds and then using specific algorithms to remove 
the confounds from the original features. The confound-
removed dataset can be used for a series of subsequent 
analyses. Domain adaptation methods focus on mapping the 
original features into a common specific feature space. 
Therefore, if distributions of the confounds are clear or easy to 
be estimated, removing the confounds using the data 
harmonization method should be optimal because it does not 
affect the downstream analysis, however, since most of the 
actual confounds are non-linear and difficult to estimate, 
domain adaptation methods should be a better choice because 
it can guarantee the improvement of task-specific 
performance.  

The non-linear characteristic of deep learning often makes 
it not intuitive for interpretation, especially when the input 
features are high-dimensional. Simulated 2D samples are 
helpful to simplify the problem. To further explain the reason 
why data harmonization cannot guarantee improved 
performance on downstream tasks, we simulated two sites (GE 
and SIEMENS) of samples. As shown in Fig. 4(a), site 2 can 
be generated from site 1 with a non-linear transformation. A 
cycle-GAN model was trained to map the data from GE to the 
SIEMENS site. The result demonstrates that cycle-GAN can 
accurately learn the distribution mappings between two sites. 
However, it cannot guarantee improving performance on 
subsequent classification tasks because of the rotation problem. 
This experiment further illustrates the limitations of 
conventional data harmonization approaches. 

 

In summary, we propose MCD-GAN, which combines the 
advantages of both generative model and maximum 
discrepancy classifier approaches, for harmonizing the 
confounds while training the classifiers to improve the cross-
site/scanner classification performance. The performance of 
MCD-GAN is compared with conventional methods, such as 
ComBat and Cycle-GAN, on a simulated and ABCD MRI 
dataset. The result demonstrates the superiority of the 
proposed method. The mechanisms of MCD-GAN are 
visualized by applying them to the simulated dataset. The 
proposed MCD-GAN is promising to facilitate the cross-site 
reproducibility of neuroimaging studies. 
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 Double moon 

simulated data 

ABCD  

cortical thickness 

ABCD 

3D MRI 

 Train Test Train Test Train Test 

No harmony 99.7% 67.8% 67.7% 63.2% 99.2% 67.5% 

ComBat 99.8% 81.1% 67.2% 65.7% 98.4% 86.0% 

Cycle-GAN 100% 96.1% 66.5% 65.7% 98.4% 86.6% 

MCD-GAN  99.8% 98.2% 66.8% 66.0% 98.2% 87.1% 

Figure 4. Simulated dataset and cycle-GAN. (a) The simulated 
"GE/SIEMENS dataset before harmonization. The SIEMENS samples 
are generated from GE samples with a non-linear transformation. (b) 
The learned mappings from GE domain to SIEMENS domain. In this 
example, the harmonized dataset will not improve the cross-site 
classification performance because of the rotation problem. 

TABLE II. Comparison of methods on datasets. 
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