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Deep learning (DL) has been extremely successful when ap-
plied to the analysis of natural images. By contrast, analyzing 
neuroimaging data presents some unique challenges, includ-

ing higher dimensionality, smaller sample sizes, multiple hetero-
geneous modalities, and a limited ground truth. In this article, we 
discuss DL methods in the context of four diverse and important 
categories in the neuroimaging field: classification/prediction, 
dynamic activity/connectivity, multimodal fusion, and interpreta-
tion/visualization. We highlight recent progress in each of these 
categories, discuss the benefits of combining data characteristics 
and model architectures, and derive guidelines for the use of DL 
in neuroimaging data. For each category, we also assess promis-
ing applications and major challenges to overcome. Finally, we 
discuss future directions of neuroimaging DL for clinical appli-
cations, a topic of great interest, touching on all four categories.

Introduction
Neuroimaging is a powerful tool that is being used to provide im-
portant insights into both healthy and disordered human brains. 
It also has the potential to translate discoveries and technological 
advances into the effective diagnosis, prevention, and treatment 
of brain disorders (https://braininitiative.nih.gov/). Flourishing 
neuroimaging techniques, such as magnetic resonance imaging 
(MRI) and magnetoencephalography (MEG), have revolution-
ized our ability to noninvasively study the human brain structure, 
function, wiring, and metabolism. In contrast to natural images, 
which are collected under natural light, neuroimaging data consist 
mostly of radiological images. Because of this, the noise distribu-
tion of neuroimaging varies depending on the acquisition used 
[e.g., Rician noise in MRI, quantum noise in computed tomog-
raphy (CT)]. As shown in Table 1, neuroimaging data come with 
many other additional unique aspects, including the number of 
modalities, high dimensionality, low signal-to-noise ratio, and 
small sample sizes compared to natural image data. 

Studies in neuroimaging using DL models initially appeared 
in 2014 [1], and the number of studies has rapidly grown since 
then, fueled by many new models as well as the accumulation 
of available data actively supported by various consortia and 
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funders (e.g., the Human Connectome Project, Alzheimer’s Dis-
ease Neuroimaging Initiative, Enhancing NeuroImaging Genetics 
Through Meta-Analysis, Autism Brain Imaging Data Exchange, 
Adolescent Brain Cognitive Development, and UK Biobank). 
MRI, as a noninvasive technique with high spatiotemporal resolu-
tion, is currently the most widely studied neuroimaging modality 
according to the search terms used (Figure 1).

Advanced neuroimaging analysis approaches are essential 
for linking brain function and structure to network and behavior. 
Linear models and, in particular, flexible matrix decomposition 
approaches have contributed a lot to our current understanding. 
For instance, group independent component analysis (ICA), as 
a purely data-driven algorithm that reveals large-scale networks 
by making group inferences from functional MRI (fMRI), is 
particularly useful for data fusion of multiple modalities, such 
as genome-wide single-nucleotide polymorphism (SNP) data or 
event-related potentials [2]. Despite this, classical neuroimaging 
analytic approaches with standard machine learning (SML) meth-
ods have relatively limited model flexibility. SMLs often require 
considerable domain expertise to design feature extractors that 
can transform raw data into suitable internal representations or 
feature vectors from which the learning subsystems can detect 
or classify patterns [3]. Such “shallow” combinations of raw 
features can be sensitive to irrelevant variations and may not be 

flexible enough for revealing high-level differences or predicting 
complex brain–behavior relationships.

By contrast, DL uses multiple processing layers to learn 
representations of data with multiple levels of abstraction. 
Compared to SML, DL approaches are highly flexible and use 
minimally preengineered features. Though complex models are 
susceptible to “black-box” problems, representative features 
can now be learned automatically via different procedures to 
improve interpretability. Consequently, DL has turned out to be 
efficient in discovering intrinsic structure from high-dimensional 
data. Historically, breakthroughs often happen when data are rel-
atively abundant, such as in text and natural image classification. 
As high-quality neuroimaging data sets accumulate, the perfor-
mance of DL in neuroimaging will undoubtedly be significantly 
improved, and the combination of unsupervised models has the 
potential of making important advances in our understanding of 
the brain.

In this review, four interrelated topics are covered: 1) classifi-
cation/regression tasks, which are often studied in the context of 
brain-based biomarker studies, and key DL models; 2) DL-based 
dynamic analysis methods, which are useful for leveraging func-
tional information in neuroimaging data; 3) multimodal fusion 
methods, which are needed to leverage complementary infor-
mation among the modalities; and 4) visualization and subtype 
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Table 1. A comparison of natural images and neuroimaging data.

Natural images Neuroimaging
Data set acquisition Easy to acquire. Available samples in benchmark data 

sets usually number more than 1 million.
Costly to acquire. Available samples in benchmark data sets are  
usually less than 10,000 and often less than 103.

Feature characteristic Features are usually 2D images or videos. Images  
under natural light. Noise distributions are mostly  
Gaussian.

Features are usually 3D volumes or 4D time sequences. Mostly consist 
of radiological images. Noise distributions vary, such as Rician noise 
in MRI and quantum noise in CT.

Data set labeling Solid and intuitive ground truth. Easy to label, specific 
skills are not necessary.

No solid ground truth. Difficult to label, specialized skills are  
necessary.

DL training Pretrained models can be used, such as VGG (https://
keras.io/api/applications/).

Few pretrained models can be used. Models typically must be trained 
from random initialization.

DL interpretation The effectiveness of interpretation results is intuitive. The effectiveness of interpretation results needs to be further validated.
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discovery, which is crucial for moving to clinical applications and 
providing clues regarding the underlying biological mechanisms.

Neuroimaging studies use a variety of techniques to study 
the structure and function of the nervous system, revealing the 
relationship between brain mechanism and behavior (symptoms). 
Most of the analysis approaches in neuroimaging fall into two 
broad categories: classification or regression. In the section “DL 
for Neuroimaging Classification and Regression,” besides intro-
ducing the core concepts behind neural networks and DL, we 
summarize the architecture of the six most popular DL models 
and their neuroimaging application scenarios. In the section “DL 
for the Analysis of Dynamic Activity and Connectivity in Neu-
roimaging Data,” we review DL methods that can leverage the 
information of temporal fluctuations in neuroimaging. The sur-
veyed study of brain dynamics shows great potential for decod-
ing brain activity and functional connectivity in various contexts, 
providing a window into interactions among circuits, networks, 
and regions, and their link to behavior in both time and space. In 
the section “DL for Multimodal Fusion,” we review DL-based 
multimodal fusion models leveraging nonlinear complementary 
information from various modalities including brain structure, 
function, network connectivity, and behavior. Especially in the 
context of data that have mismatched dimensionality (e.g., brain 
structure and brain function), the flexibility of DL models is of 
notably great importance. In the section “Visualization and Sub-
type Discovery,” topics related to visualization and spectrum dis-
covery are covered. While DL is often treated as a black box, its 

use in studying the brain hinges on approaches to visualize and 
interpret important features, which can help us explore heteroge-
neity across healthy individuals or mental disorders. At the end 
of each section, we also highlight some of the promises and chal-
lenges of DL within each given category. Finally, we discuss a 
major challenge involving all four of the interrelated topics high-
lighted in this article (Figure 2): the promise of DL to accomplish 
important practical goals and to facilitate translational research to 
clinical practice.

DL for neuroimaging classification and regression
Classification and regression are two widely studied supervised-
learning tasks. The difference between classification and regres-
sion tasks lies in whether the target variable is continuous or 
discrete. In broad terms, the core aim of both tasks is to map x 
(neuroimaging data) to y (e.g., diagnosis, treatment response, and 
behavior). Compared with natural images, neuroimaging is more 
complex, usually with a higher dimensionality (often above 
104 voxels), smaller sample sizes (fewer than 104 samples), mul-
tiple data modalities (e.g., MRI and CT), and often lacking a solid 
ground truth. Even though neuroimaging data are highly diverse, 
two broad categories can be distinguished: structural imaging and 
functional imaging (Figure 2). 

Structural neuroimaging data, such as those from structural 
MRI (sMRI) or diffusion MRI (dMRI), reflect voxel tissue den-
sity/volume or structural connectivity. The main purpose of struc-
tural studies is to reveal the anatomical relationships in the brain, 
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which can in turn be used for prediction. Functional neuroimag-
ing data focus on dynamic changes in the activity or connec-
tivity of the brain. Because of the high dimensionality and low 
signal-to-noise ratio in neuroimaging data such as MRI, efficient 
feature processing is important for reducing redundancy before 
modeling. For example, fMRI time courses are often dimen-
sionality reduced using atlas-based or data-driven approaches, 
such as ICA. The resulting temporal signatures are then used 
for studying temporal dependence, such as functional network 
connectivity (FNC) or dynamic FNC (dFNC). In a typical deep 
learning system, there may be hundreds of millions of adjustable 
weights, and such models require a large number of samples for 
training. Properly balancing a DL model’s complexity with the 
available sample size is vital for neuroimaging. Here, we sum-
marize the fundamental mechanisms of the popular DL models 
and provide recommendations regarding their corresponding 
neuroimaging applications.

Multilayer perceptron models
A multilayer perceptron (MLP) model trained by simple statistic 
gradient descent was the first proposed solution for replacing en-
gineered features with trainable multilayers [3]. The hidden layers 
can be regarded as distorting the input in a nonlinear way so that 
categories become separable by the last layer. This deep neural 
network can theoretically fit any mapping relationship. However, 
fully connected layers may cause redundancy of trainable param-
eters and overfitting. While regularization rules and dropout can 
remediate the overfitting problem, MLP is most suitable for low-
dimensional and less redundant input, such as FNC vectors [4]. In 
addition, because of its flexibility, MLP is often used as a back-
bone for more complex DL models [e.g., a generative adversarial 
network (GAN)] for classification [5].

Convolutional neural networks and graph  
convolutional networks
Convolutional neural networks (CNNs) are now the dominant ap-
proach for almost all recognition and detection tasks. They are 
designed to process data that come in the form of multiple arrays, 
such as natural signals or images. The core elements of a CNN 
that take advantage of the properties of natural signals are local 
connections, shared weights, pooling, and the use of deep layers. 
The two operations that distinguish CNNs from other DL models 
are convolution and pooling. The role of convolutional layers is 
to detect local conjunctions of features from the previous layer; 
the role of the pooling layer is to merge semantically similar fea-
tures into one. Based on the convolutional operation, the CNN 
input ideally consists of a highly correlated local group of values, 
with the local statistics of data invariant to location. Therefore, 
the CNN is well suited to process 2D or 3D T1 images by le-
veraging the spatial information to improve performance. For ex-
ample, recent work has shown that leveraging the 3D structure of 
neuroimaging data via a CNN has substantial improvement over 
SML models [6]. Despite the great successes of CNNs, the non-
Euclidean characteristic of graph features such as those obtained 
from FNC makes the general convolution and filtering not as well 
defined as on natural images. Similarly, a graph convolutional 

network (GCN) is a type of neural network architecture that can 
capture the graph structure and aggregate node information from 
the neighborhoods in a convolutional fashion with fewer learn-
able parameters. GCNs are useful in medical or biochemical ap-
plications with graph data, such as FNC.

Recurrent neural networks
Recurrent neural networks (RNNs) process an input sequence 
one element at a time, maintaining in their hidden units a “state 
vector” that implicitly contains information about the history of 
all of the past elements of the sequence. It models the following 
generic dynamic system:  ,( ) ( ) ( )( ).x t F x t u t=o  The state of the 
dynamic system ( )x t  is updated by a vector-valued function F, 
which is nonlinear and potentially complicated, and accepts op-
tional input ( ).u t  The long short-term memory network (LSTM) 
and gated recurrent unit (GRU) are two variants of RNNs that use 
special hidden units for remembering inputs for a longer time. 
Compared to classical linear machine learning models, such as a 
hidden Markov model, an RNN models the long-term nonlinear 
mechanisms of the sequential data. Therefore, the RNN is suit-
able for solving tasks that involve sequential inputs, such as fMRI 
time courses [7]. 

GANs
A CNN/RNN model that is trained for mapping high-dimension-
al features to labels is best categorized as a discriminative model 
because it is not focused on learning the distribution of the fea-
tures. A generative model that can approximate the distribution 
of inputs is more robust and interpretable. Just as in a quote from 
Richard Feynman: “What I cannot create, I do not understand,” 
a trained GAN model can generate samples by passing random 
noise through MLPs. 

A GAN has two agents: a generator G and a discriminator 
D. G has no direct access to real data; the only way it learns is 
through its interaction with D. D has access to both the synthetic 
samples and samples drawn from the stack of real data. An error 
signal to D is provided through the simple ground truth of know-
ing whether the data came from the real stack or G. The same 
error signal, via D, can be used to optimize G, leading it toward 
being able to produce fake data of better quality [8]. The GAN is 
not a specific model but a generative framework. All of the previ-
ously mentioned DL models, such as MLP or CNNs, can be used 
as the backbone of a GAN. Compared to discriminative models, 
GAN models are more challenging to optimize because the data 
distribution is more difficult to approximate than simply finding 
classification borders. The representation learned by GANs may 
be used in a variety of neuroimaging applications, including clas-
sification, neuroimaging synthesis, and multisite neuroimaging 
harmonization.

Attention modules
The use of an attention module was proposed to increase the rep-
resentation power and improve interpretability by focusing on 
important brain regions and suppressing unnecessary ones, which 
is often combined with other DL models for interpretation, al-
lowing the model to dynamically emphasize certain parts of the 
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input. As reported in [9], a weak supervised-learning-based DL 
consisting of a backbone network with an attention module has 
been applied to improve Alzheimer’s disease classification per-
formance using sMRI. Attention maps can also be helpful for 
discovering task-related biomarkers. For example, an attention-
guided RNN model was used for explaining the fMRI features’ 
significance when identifying schizophrenia [10]. A transformer 
is a promising attention model that has no recurrent networks but 
can remember how sequences are fed into the model and encodes 
the relative position of each element [11]. These positions can be 
added to the embedded representation (an n-dimensional vector) 
of each time step of fMRI time courses.

Promises and challenges
DL has achieved great success in classification and regression 
tasks, and with the growing availability of data, the perfor-
mance will continue to improve. However, there are still some 
hurdles that must be overcome. The first one is the difficulty 
of model design. Even though some autodifferential platforms 
have greatly simplified the procedures of model design, vari-
ous hyperparameters, such as width, depth, loss function, and 
optimizers are typically decided based on experience. Funda-
mental DL theories, standard criteria, and handbooks are need-
ed to guide the design of DL models. Another challenge that 
arises quite often in neuroimaging is that of high-dimensional 
small-sample problems. DL models designed for 3D or 4D 
neuroimaging data often consist of millions of parameters that 
require many samples for optimization. Large-scale neuroim-
aging data sets are not easily acquired, and the noise distribu-
tions vary. Thus, augmentation approaches for natural images 
are not well suited for neuroimaging data. Multiset data inte-
gration/fusion and improved algorithms are needed to address 
these domain discrepancies.

DL for the analysis of dynamic activity and connectivity 
in neuroimaging data
Cognition, perception, and movement arise from nonlinear dy-
namic activity across large-scale systems of the brain. These func-
tions are driven by latent mental processes and external tasks. The 
characterization of brain activity and connectivity dynamics (e.g., 
the chronnectome) is crucial for our understanding of brain func-
tion [12]. However, uncovering relevant transient patterns in brain 
function is challenging because of the lack of computational tools 
that can effectively capture nonlinear dynamics from high-di-
mensional data. Recent studies show that DL models, especially 
RNN-based networks, have the potential to capture whole-brain 
dynamic information and utilize the time-varying functional con-
nectivity state profiles to expand our understanding of brain func-
tion and disorder [13], [14].

Modeling spatiotemporal dynamics using DL models
Conventional neuroimaging classification approaches, which use 
functional network connectivity or spatial maps as input features, 
ignore the temporal dynamic information. DL models exhibit 
excellent feature representation learning ability and provide a 
potential tool for capturing spatiotemporal information directly 

from the time courses. In particular, RNNs have achieved great 
successes in sequence modeling tasks and are now broadly used 
in brain dynamic analysis for brain disorder diagnosis, brain de-
coding, and temporally dynamic functional state translation de-
tection. dFNC is an approach to identify time-varying patterns of 
connectivity from fMRI data. To capture the temporal informa-
tion in dFNC, Yan et al. [15] proposed a full-bidirectional LSTM 
that can handle both preceding and succeeding information by 
using two hidden layers with opposite information flow directions 
and thus better characterize the “chronnectome” (see “RNN for 
dFNC” in Figure 3). To overcome the effect of the window size 
parameter when processing the data, a CNN is used to directly 
extract the functional connectivity. A multiscale RNN can then 
incorporate spatiotemporal information in the fMRI time courses 
in the context of a group discrimination task (e.g., a schizophre-
nia diagnosis) and boost predictive performance by combining 
the CNN and RNN [7] (see “RNN for time courses” in Figure 3). 
RNN-based models can also be applied to adaptively capture tem-
poral dependencies, providing more discriminative information 
for brain state decoding and prediction in real time [16]. These 
studies show the potential of DL models for studying brain dy-
namic activity, and this progress will undoubtedly continue as 
more models are developed.

The combination of DL with conventional  
neuroimaging tools
To facilitate the discovery of the dynamic information in neuro-
imaging data, DL can be blended with well-studied data-driven 
machine learning approaches, such as ICA, which can also en-
hance the interpretability of the results. As shown in [14], Ka-
zemivash and Calhoun proposed a novel spatiotemporal network 
for brain parcellation, which combined a 3D CNN with ICA and 
enabled the framework to explore high-dimensional (5D) brain 
dynamics (see “DL combined with ICA” in Figure 3). In addition, 
RNN-ICA [17] has been proposed to combine RNN with ICA for 
a sequential ICA objective, which can explicitly optimize linear 
generative models to model temporal dynamics and infer intrin-
sic networks from time-series observations (the network structure 
and identified spatial maps are shown in “RNN leverages ICA” in 
Figure 3). RNN-ICA extends the RNN frameworks to incorporate 
the infomax objective and can be applied to various types of data 
(e.g., simulated synthetic data, task-related scans, and resting-
state fMRI) to identify both similar task-relatedness patterns and 
directed temporal connectivity.

Promises and challenges
RNN-based models take advantage of the ability to model the se-
quential information/dynamic functional connectivity and simu-
late the periodic brain status change; therefore, they can achieve 
an improved predictive performance compared with conventional 
models. However, in existing work, dynamic features are often 
calculated using window-based correlation, and thus the window 
size is a hyperparameter that affects the dFNC features. Window-
based methods with a short window cannot capture long-time 
correlations, whereas longer windows reduce sensitivity to rapid 
changes; hence, it can be challenging to select the proper window 
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size. Recent research in natural language processing has proposed 
transformer models [11] that can capture sequential interdepen-
dence using the attention mechanism to provide a potential brain 
dynamic modeling solution. Beyond this, it can be challenging to 
validate the results because of the lack of a gold-standard ground 
truth. Considering that most existing measurements focus on 
comprehensive assessments rather than temporally targeted infor-
mation, additional studies are needed to evaluate the reliability 
and reproducibility of the analyzed results.

DL for multimodal fusion
Neuroimaging data typically include multiple modalities, such as 
sMRI, fMRI, and dMRI, which provide multiple views for ob-
serving and analyzing the brain. To leverage the complementary 
representations of different modalities, multimodal fusion is con-
sequently needed to provide a more complete understanding of 
brain mechanisms [18]. However, conventional nonlinear fusion 
models may not be sufficiently flexible to fully capture intrinsic 
structures and external relationships in multimodal neuroimag-
ing. DL multimodal fusion methods, which can learn multilevel 
nonlinear abstract representation of the data, have outperformed 
conventional fusion methods in many tasks.

DL frameworks for multimodal fusion
A variety of DL models, including all those mentioned earlier, 
have been applied as the backbone to extract high-level features in 
multimodal neuroimaging fusion frameworks. The model choice 
depends heavily on the data structure of each modality. Despite 
the variety of available models, most multimodal fusion strategies 
fall into the following two categories: prefusion and postfusion. 
A prefusion strategy concatenates raw features from multiple 
modalities before sending them to DLs. By contrast, a postfu-
sion strategy first employs DLs for learning feature representa-
tions of each modality and then concatenates them for subsequent 
tasks. Prefusion is easy to implement but has limitations when 
the feature dimensionality of one modality is much higher than 
the others or when the concatenation is infeasible because of the 
heterogeneity in data format. Compared to prefusion, a postfusion 
framework is more flexible when dealing with diverse modali-
ties but more laborious in finding the optimal architectures and 
hyperparameters.

Beyond the concatenation-based postfusion, more advanced 
postfusion methods have been proposed by considering cross-
modality relationships. Multimodal reconstruction, deep canoni-
cal correlation analysis (DCCA), and knowledge-transfer-based 
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fusion are three popular multimodal fusion methods. As illus-
trated in Figure 4, a multimodal reconstruction method employs 
autoencoders (AEs) to learn optimal cross-modality representa-
tions that can best reconstruct the original data. Unlike a standard 
AE, multimodal reconstruction learns a representation with two 
encoders and then uses the shared representation for reconstruc-
tion, which is suitable for unsupervised tasks where the label is 
not acquired. Capturing cross-modality correlation or mutual 
information is another way to perform multimodal fusion. One 
example is DCCA, which allows two DL models to learn new 
representations while optimizing their correlations. The fusion 
performance of DCCA can be further improved by utilizing 
knowledge transfer, which retains the correlated features and 
leverages information among different modalities [19].

Multimodal fusion applications in neuroimaging
The availability of multiple neuroimaging data and the complexity 
of the brain have led to numerous multimodal fusion applications. 
For example, Venugopalan et al. compared prefusion and post-
fusion frameworks by integrating MRI imaging data, electronic 
health record data (including longitudinal information about pa-
tients and doctors), and SNP data for Alzheimer’s disease iden-
tification [20]. The results showed that postfusion worked better 
than prefusion because of the high data heterogeneity. Some other 
state-of-the-art cross-modality representation methods that can 
better learn latently shared and distinguished relationships have 
also been proposed. Deep collaborative learning can incorporate 
labels into the DCCA method. It has been validated on resting-
state fMRI and task fMRI [21], showing high performance for 
classifying age groups. A combination of an AE and the DCCA 
method was proposed to better classify schizophrenia by integrat-

ing fMRI data and SNP data [22] [Figure 5(a)]. In addition, a mul-
timodal GCN achieved high performance in a cognitive-ability 
prediction task by using a manifold to regularize the multimodal 
GCN and considering the relationships of subjects both within 
and between modalities [19] [Figure 5(b)]. Plis et al. proposed a 
translation-based fusion model that learned the linkage between 
functional dynamic connectivity and static gray matter patterns 
computed from sMRI. The work was evaluated on multisite rest-
ing-state MRI data, also including an independent data set [23].

Promises and challenges
The development of state-of-the-art fusion methods (e.g., cross-
modal representation-based methods) has shown enhanced per-
formances over unimodal analysis within the DL framework, 
which facilitates the early detection or subtype classification of 
brain diseases from comprehensive views. However, multimodal 
fusion often lacks enough training samples. In addition, most ap-
proaches require modalities to be available for all data sets, re-
sulting in samples being discarded. The choices of models and 
fusion strategies in existing works are usually based on intuition. 
Thus, a quantitative explanation of how the high-level features 
are extracted and how they contribute to the downstream tasks 
is needed. In addition, since joint features extracted from vari-
ous modalities are aggregated within a unified model, the roles 
of each modality can be blurred. Therefore, interpretation can be 
even more challenging in the context of multimodal data fusion.

Visualization and subtype discovery
The flexibility of DL, including its ability to model nonlinear 
relationships, is vital but can make interpretation challenging. 
In contrast to natural images, neuroimaging studies often lack a 
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solid ground truth, especially psychiatric neuroimaging studies. 
Because of this, DL visualization is a crucial way to expand our 
knowledge of clinical cues of brain disorders. Visualization is 
also used for discovering biomarkers and relationships among 
mental disorders.

Network visualization for biomarker discovery
Reasonable network visualization approaches should meet the 
following three requirements: 1) be readable and understandable 
to humans; 2) provide useful information about what mental or 
behavioral constructs are represented in particular brain pathways 
or regions; and 3) be based on relevant neurobiological signals, 
and not confounds [24]. The popular visualization approaches can 
be classified into four categories: interpretable local surrogates, 
occlusion analysis, gradient-based methods, and layer-wise rel-
evance propagation [25] [Figure 6(a)]. 

Interpretable local surrogates produce explanations of a DL by 
locally approximating it with a simpler model (e.g., a linear one) 
around the input sample being interpreted and then producing an 
intuitive summary of the simpler model that can be interpreted. 
Local interpretable model-agnostic explanation (LIME) and 
Shapley additive explanations (SHAP) are two classical imple-

mentations of local surrogates. Lombardi et al. embedded SHAP 
and LIME to explain the outcomes of DL models by determin-
ing the contribution of each brain morphological descriptor to the 
final predicted age of each subject and investigating the reliability 
of the two methods. The SHAP approach was found to provide 
more reliable explanations for morphological aging mechanisms 
[26]. Occlusion analysis is a widely used architecture-indepen-
dent method in which a particular type of perturbation analysis 
repeatedly tests the effects on the neural network’s output when 
occluding patches or individual features in the input features. A 
heatmap is built from these scores, highlighting locations where 
the occlusion has caused the strongest effect of the function. 
Occlusion analysis has been applied to CNN- and RNN-based 
models for measuring the contribution of each brain region in 
classification tasks [7]. 

Gradient-based methods can be computed using automatic 
differentiation and require no modification of the original DL 
model. Identification of discriminative brain regions in a classi-
fication of schizophrenia spectrum disorder versus controls has 
been performed using a specific gradient-based implementation 
[27]. However, gradient-based methods are often computation-
ally expensive, especially when making the integration procedure 
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accurate. Layer-wise relevance propagation makes explicit use of 
the layered structure of the neural network and operates iterative-
ly to produce an explanation. Layer-wise relevance propagation 
analysis is performed at the level of single input samples, enabling 
an analysis on several levels of data granularity, from the level 
of the group down to the level of single subjects, trails, and time 
points [28].

Spectrum and subtype discovery using DL framework
Psychiatric disorders are often diagnosed based on symptoms 
rather than biological data. There is also often considerable over-
lap among different types of psychiatric disorders, which makes 
accurate diagnosis challenging. Examining the neurobiology of 
the psychotic-affective spectrum may greatly advance the biolog-
ical determination of psychiatric diagnosis, which is critical for 
the development of more effective treatments [29]. DL can jointly 
optimize feature embedding and classification hyperplanes us-
ing the error backpropagation method. As shown in Figure 6(b), 
Abrol et al. projected the learned DL embedding onto a 2D plane 
using t-distributed stochastic neighbor embedding (tSNE) for the 
entire range of training samples and color-coded the 2D projec-
tion spectrum by the class labels. They found separate gender 
clusters, ordered in increasing age from one end of the spectrum 
to the other [6]. Similar results have also been obtained when us-
ing DL to discriminate Huntington’s disease based on MRI [1]. 
The results indicate that DL encodes more robust nonlinear dis-
criminative neuroimaging representations than conventional ma-
chine learning.

Subtype discovery is crucial to move toward precise medicine, 
such as individualized therapy, but it is also challenging, espe-
cially when the signal-to-noise ratio is low. Under such circum-
stances, clustering models are likely to be misled by confounds 
such as age, gender, or site effects. To overcome this problem, 
DL can be used to map the neuroimaging data into a subspace in 
which the subtypes can be clustered. The supervised classifica-
tion module can be first trained using a supervised way to map 
the original fMRI features to a subspace where the differences 
among psychiatric disorders are more distinctive. Then high-level 
representations of the original features are submitted to a tSNE 
clustering model for visualizing the group differences among dis-
orders [30] [Figure 6(c)].

Promises and challenges
Interpreting ML models in neuroimaging is intrinsically an open-
ended process. The developing DL interpretation approaches 
show promise for providing insights into new mechanisms of 
brain activity and biomarkers of brain disorders. Unlike natural 
image data sets, which contain millions of accurately labeled 
training samples, the ground truth is usually not clear in neuroim-
aging studies, and the cost of the incorrect interpretation is high. 
For instance, even a sophisticated psychiatrist cannot tell the dif-
ferences between a patient with depression and a healthy control 
based merely on fMRI. Because of this, DL interpretation meth-
ods that might work well in the natural imaging field cannot easily 
be applied to the neuroimaging field because it is difficult to vali-
date the results. In addition, different explainability approaches 

may not always obtain consistent results. The effectiveness of the 
results should be validated using various invasive techniques (e.g., 
brain stimulation).

Future directions: From the lab to clinical practice
The strength of DL models is that they can implement compli-
cated and, in principle, arbitrary, predictor–response mappings 
efficiently. This power comes with some costs, including the 
requirement of a large number of training samples, complicated 
model architectures, and difficulty in model interpretation. De-
spite promising results in neuroimaging analysis, few algorithms 
have reached clinical implementation, challenging the balance 
between hope and hype for these techniques. The real clinical 
value of machine learning methods and their associated biomark-
ers will likely come from our ability to detect subtle differences 
in imaging signatures before the disease is clinically diagnosed, 
to refine clinical categories according to imaging phenotypes of 
clinical relevance, or to inform treatment.

Minimizing the model design and model fine-tuning burden 
The widespread success of DL methods has created a need for 
architecture engineering, where data scientists are tasked with 
manually designing increasingly complex neural architectures. 
The neural architecture search (NAS) technique has emerged, 
which seeks to automatically select, compose, and parameterize 
DL models to achieve optimal performance on a given data set 
and task. NAS methods are best categorized by three factors: 
search space, search strategy, and performance estimation strat-
egy. The search space refers to the potential neural architectures 
that can be represented by the NAS algorithm, and the search 
strategy refers to how this space is explored. The performance 
estimation strategy refers to how the NAS algorithm evaluates 
a given architecture’s performance on some tasks given some 
training data set. NAS is an important but relatively new field 
in neuroimaging.

Privacy protection in multisite collaboration 
Multisite collaboration is necessary to gather more data for DL 
training. Instead of transferring data directly to a centralized data 
warehouse for building machine learning models, federated (or de-
centralized) learning enables multiple sites to collaboratively learn 
a shared classification/prediction model while keeping the training 
data at each local site. As shown at http://coinstac.trendscenter. 
org, a local site can download the current DL model and improve 
it by learning from data on its site and then summarize the changes 
as a minor focused update. Such an update can then be uploaded 
to the cloud, providing a scalable option for accessing more data 
via multisite collaboration and privacy protection.

Interpretation results and clinical validation 
A concise interpretation result should not only be relatively con-
sistent when using different interpretation methods but also gen-
eralizable to other data sets or tasks [24]. Going forward, it will 
be imperative to bring in more converging evidence from related 
literatures and invasive studies (e.g., transcranial magnetic stim-
ulation or electroconvulsive therapy) with different modalities 
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and multiple species to better understand the model’s neurobio-
logical meaning.

Conclusions
DL, which allows computational models consisting of multiple 
processing layers to learn representations of data with multiple 
levels of abstraction, is a promising method and has been mak-
ing breakthroughs in the neuroimaging field. In this work, we 
systematically review the basic mechanisms of DL in neuroim-
aging and highlight some key findings, including the following. 
1) DL is able to outperform SML in large-scale neuroimaging 
classification and regression tasks when using rich features. 2) 
When incorporated with dynamic analysis, DL shows strength 
in capturing time-varying information and can improve the 
sensitivity and specificity. 3) By leveraging complementary, 
multifaceted information, multimodal fusion combined with 
DL is more efficient and flexible than traditional methods. 4) 
Complex nonlinear relationships in neuroimaging can be cap-
tured by DL to identify novel disease subtypes, facilitating bio-
marker discovery. 

The development of imaging techniques and multisite col-
laboration and data sharing is producing the additional high-qual-
ity neuroimaging data needed to fuel DL to uncover key brain 
mechanisms. Combining DL interpretation with invasive meth-
ods will lead to more reliable biomarkers with the potential for 
clinical value. In conclusion, DL opens a window for exploring 
brain mechanisms through the lens of many types of neuroimag-
ing features. As a result, the field is rapidly moving toward more 
refined and biologically based diagnoses as well as precise clini-
cal applications.
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