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ABSTRACT 
 
Deep learning has gained considerable attention in the 
scientific community, breaking benchmark records in many 
fields such as speech and visual recognition [1]. Motivated by 
extending advancement of deep learning approaches to brain 
imaging classification, we propose a framework, called “deep 
neural network (DNN)+ layer-wise relevance propagation 
(LRP)”, to distinguish schizophrenia patients (SZ) from 
healthy controls (HCs) using functional network connectivity 
(FNC). 1100 Chinese subjects of 7 sites are included, each 
with a 50*50 FNC matrix resulted from group ICA on 
resting-state fMRI data. The proposed DNN+LRP not only 
improves classification accuracy significantly compare to 
four state-of-the-art classification methods (84% vs. less than 
79%, 10 folds cross validation) but also enables identification 
of the most contributing FNC patterns related to SZ 
classification, which cannot be easily traced back by general 
DNN models. By conducting LRP, we identified the FNC 
patterns that exhibit the highest discriminative power in SZ 
classification. More importantly, when using leave-one-site-
out cross validation (using 6 sites for training, 1 site for 
testing, 7 times in total), the cross-site classification accuracy 
reached 82%, suggesting high robustness and generalization 
performance of the proposed method, promising a wide 
utility in the community and great potentials for biomarker 
identification of brain disorders. 

Index Terms— deep neural network, layer-wise 
relevance propagation, functional network connectivity, 
schizophrenia 
 

1. INTRODUCTION 
 

Resting-state fMRI (rs-fMRI) has been successfully 
employed to exploit neuronal underpinnings in 
neuropsychiatric disorders. A recent schizophrenia 

classification challenge demonstrated clearly, across a broad 
range of classification approaches, the value of resting state 
fMRI data in capturing useful information about 
schizophrenia [2]. Low signal-to-noise ratio, high dimension, 
and small sample size are still the main challenges in 
neuropsychiatric disorder diagnostics [3]. To overcome the 
difficulties, hundreds of machine learning methods have been 
carried out for dimension reduction and accurate 
classification of patients with heterogeneous mental and 
neurodegenerative disorders, including independent 
component analysis (ICA), support vector machine (SVM), 
and so on. It is worth mentioning that ICA is a method for 
recovering underlying signals from linear mixtures of these 
signals and draws upon higher-order signal statistics to 
determine a set of “components” that are maximally 
independent of each other. It is able to capture the complex 
nature of fMRI time courses while also producing consistent 
spatial components [4].  The resting state FNC features which 
are computed between each pair of selected independent 
components have been successfully exploited to 
automatically discriminate schizophrenia patients [5].  

Deep learning methods have recently demonstrated 
unprecedented classification performance via a hierarchical 
representation of input data from research studies to industrial 
applications. More recently, the deep learning has shown its 
efficacy to neuroimaging data [6-8]. Nevertheless, because of 
the nested non-linear structure, it is not obvious which input 
dimensions are mainly responsible for a given prediction. 
LRP is a potential remedy for the lack of interpretability of 
DNNs that has limited their utility in clinical applications [9]. 
LRP explains individual classification decisions of a DNN by 
decomposing its output in terms of input variables. 

The purpose of this study is two-fold. First, improving 
the classification accuracy of SZ patients vs. HC subjects by 
using modified DNN classifier. Second, extracting the highly 
discriminative FNCs with LRP. Therefore, we propose a 
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framework, called “DNN+LRP”, for the discrimination of 
schizophrenia patients from healthy controls and explanation 
of individual network decisions. The framework integrates 
functional network connectivity patterns with deep learning  
methods. The philosophy is natural yet effective: (1) reducing 
the dimension of the fMRI data; (2) finding out the high-level 
and relevant feature representation. FNC based on ICA, as an 
efficient unsupervised and feature-selection method, can 
avoid the curse of dimensionality and improve the ratio of 
signal to noise. In addition, the DNN can derive hierarchical 
feature representations from the lower level features. What’s 
more, the heat map derived by LRP can explain why the 
classifier reaches a certain decision in a single instance.  

Fig. 1 shows the framework corresponding technical 
details of the algorithm. The DNN classifier outperformed the 
conventional machine learning methods (i.e., SVM, Random 
Forests, AdaBoost classifier) and performed well while doing 
multi-sites prediction task, which suggests that the DNN-
based method can lead to better feature learning. The 
biomarker subsets extracted by LRP are meaningful in the 
context of medical medicine. 

 
2. MATERIALS AND METHODS 

 
2.1. Overview 
 
Fig. 1 presents an overview flow diagram of the analysis. 
First, the raw data are preprocessed following the standard 
procedure. Then the group ICA algorithm is applied to 
calculate group independent components (ICs). After 
removing ICs with artifacts, the functional network 
connectivity matrices are computed with the reserved ICs 
(Fig. 1a). Second, the FNC patterns are used as the input of 
the DNN classifier. The DNN classifier is trained and 
parameters are optimized using training and validation data 
from the cross-validation (CV) framework during the training 
phase (Fig. 1b). A classification of SZ patient and HC subject 
are performed for each individual in the test data during the 
test phase. Third, the explanations of how a DNN reaches a 
decision and the most informative FNC patterns are produced 
with layer-wise relevance propagation (LRP) (Fig. 1c). 
 
2.2. Data description and preprocessing 
 
The resting-state fMRI data are collected from 542 healthy 
and 558 schizophrenic patients.  The details of the data are 
shown in Table I. The fMRI data are preprocessed using 
SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/), motion 
corrected, spatially normalized into standard MNI space and 
slightly subsampled to voxel size 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels. Then group ICA is performed on the 
preprocessed fMRI data using GIFT software  
(http://mialab.mrn.org/software/gift), fMRI images are 
decomposed via principal component analysis (PCA), with 
the first 100 components selected for dimension reduction. 
Then the Infomax algorithm is repeated 20 times using 

ICASSO to improve the reliability of the decomposition, 
resulting in 100 group independent components (ICs). 50 ICs 
are characterized as functional network connectivity (FNC) 
after removing ICs with artifacts [18]. The time courses (TCs) 
of 50 ICNs across the whole brain are post-processed by 
detrending, regressing out head motion, despiking and low-
pass filtering (<0.15 Hz). Then the FNC matrices for all 
subjects are calculated as the Pearson’s correlation between 
TCs of each pair of ICs. The magnitudes of FNC strength are 
used as the input of the DNN model.      
 
2.3. DNN training with ۺ૚/ۺ૛ norm regularization and 
parameter optimization 
 
The DNN model consists of one input layer, multiple hidden 
layers, and one output layer. The target values of the two 
output nodes in the output layer are assigned as [1,0]் and [0,1]் for the input pattern from HC and the SZ group. The 
high-dimensional characterization of an individual may cause 
overfitting on the training dataset. To reduce the 
susceptibility of overfitting, we limit the complexity by 
controlling sparsity of the parameters with 2ܮ/1ܮ  norm 
regularization. The loss function, ܮ(ܹ) of the DNN for the 
supervised fine-tuning step is defined using the mean squared 
error (MSE),   2ܮ/1ܮ terms as follows:  (ࢃ)ܮ = 12 ෍ฮ࢟{௡} − ࢚{௡}ฮଶ + ෍ ฮ௅{௟}ࢃ௟ฮߚ

௟ୀଵ
ே

௡ୀଵ + 12 ෍ ฮଶ௅{௟}ࢃ௟ฮߛ
௟ୀଵ    (1) 

 
 

Fig. 1. Overview flow of the “DNN-LRP” framework 
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Where࢟{௡} is the output vector for the n௧௛  subject, ݊ in the 
training set,  ࢚{݊} is the target output values for the ݊௧௛ subject. ߚ and ߛ  are the 2ܮ/1ܮ  norm regularization parameters, 
respectively. ࢃ௟ is the DNN weights matrix in the ݈௧௛ hidden 
layer. ܰ is the number of subjects in training data,  ܮ is the 
number of hidden layers in the DNN. The adjustable 
parameters are jointly optimized through minimizing the 
misclassification error over the training set [2].  

The stochastic gradient-based optimization algorithm 
we used to minimize the loss is Adam, a method for efficient 
stochastic optimization that only requires first-order 
gradients with little memory requirement [10]. The method 
combines the advantages of two recently popular methods: 
RMSProp, which works well in online and non-stationary 
settings, and AdaGrad, which works well with sparse 
gradients. Stochastic regularization methods, such as dropout, 
are also effective ways to prevent overfitting and often used 
in practice due to their simplicity. The neurons which are 
dropped out do not contribute to the forward pass and do not 
participate in backpropagation. Batch normalization can also 
aid generalization [11]. In this practice, in addition to  2ܮ/1ܮ 
norm regularization, we also applied both dropout and batch 
normalization after applying the ReLU nonlinearity in all 
hidden layers. 

 
2.4. Multi-sites prediction 
 
By now, a large amount of data from multi-sites studies has 
been available for developing, training and evaluating 
automated classifiers. However, their translation to the 
clinical remains challenging in part due to their limited 
generalizability across different datasets [12]. Generally 
speaking, machine learning methods built on a relatively low 
number of subjects suffer from poor generalizability [13]. 
Combining datasets, even if acquired on different scanners 
and from different centers, can theoretically improve 
predictive models. Therefore, the limitations of small sample 
sizes can be overcome by combining multi-sites data, and 
unbalanced datasets can benefit from the more balanced 
distribution that derives from merging multiple datasets [14]. 
Furthermore, the robustness and generalization performance 
of the machine learning method has important effects on the 
classification results. 

To reduce the susceptibility to overfitting, we limit the 
complexity of DNN classifier with some tricks, including 2ܮ/1ܮ  norm regularization, dropout and batch 
normalization. To test multi-site prediction performance of 
the DNN model, we elects to use a leave-one-site-out cross 
validation method, which allows one center left for testing 
and the remaining centers used for model creation. The 

procedure proceeds until each center had performed once in 
the test set. The average of all these datasets is what generated 
our multi-site predictive values. 
 
2.5. Layer-wise Relevance Propagation for Deep Neural 
Network Architectures 
 
A deep neural network is a feed-forward graph of elementary 
computational units. Each of them realizing a simple function 
of type [15].  ݔ௝௟ାଵ = max ൬0, ෍ ௜௝{௟,௟ାଵ}ݓ௜{௟}ݔ + ௝ܾ௟ାଵ௜ ൰                 (2) 

Where j indexes a neuron at a particular layer  ݈ + 1, where 
 runs over all lower-layer neurons connected to neuron ݅, 

and where ݓ௜௝{௟,௟ାଵ} , ௝ܾ௟ାଵ are parameters specific to pairs of 
adjacent neurons and learned from the data. 

Because of the nested non-linear structure, it is not 
obvious which input dimensions are mainly responsible for a 
given prediction. Layer-wise relevance propagation is a 
method to compare scores for image pixels and image regions 
denoting to the prediction of the classifier for one particular 
test image. The extreme specificity of the LRP-derived heat 
maps can open up new avenues for investigating neural 
activity underlying complex perception of decision-related 
processes. The spatiotemporal heat maps represent a new 
quality of explanatory resolution that allows us to explain 
why the classifier reaches a certain decision in a single 
instance. A modularity analysis incorporating the learned 
features of the DNN can reveal how FNC patterns are 
decomposed in each of the hidden layers to better 
discriminate SZ patients from HCs. 

A deep network derives its complexity from the 
interconnection of a large number of these elementary units, 
and from the availability of an efficient algorithm for learning 
the model (error backpropagation). The output of a deep 
neural network is obtained by evaluating these neurons in a 
feed-forward pass. Conversely, the same graph can be used 
to redistribute the relevance at the output of the network onto 
pixel-wise relevance scores ܴ௜{௟}  [16], by using a local 
redistribution rule:    ܴ௜{௟} = ෍ ∑௜௝ݖ ௜௝௜ݖ ௝ܴ{௟ାଵ}௝ , ௜௝ݖ =  ௜௝{௟,௟ାଵ}                    (3)ݓ௜{௟}ݔ

Where ݅  indexes a node at a particular layer ݈ and   runs 
over all upper-layer neurons to which neuron ݅   contributes.  

For a more theoretical view of LRP, we refer the reader 
to [16, 17], where the author shows a close connection 
between LRP and a deep Taylor decomposition. An 
implementation of LRP can be found and downloaded from 
www.heatmapping.org. 
 

3. RESULTS AND DISCUSSION 
 
3.1. DNN implementation and Comparison with typical 
classification methods 
 

Table I  Characteristics of the participants in this study 
Group Healthy Schizophrenia P 
Number 542 558 NA 
Age (݉݁ܽ݊ ±  0.06 7.1±27.6 7.2±28.0 (݀ݏ
Gender (male/%) 276/51% 292/52% 1.96 



The DNN model with multiple hidden layers are trained using 
a standard error back propagation algorithm using batches of 
16 randomly drawn training samples. To simplify our 
experiments, we did not use any unsupervised pre-training 
even though we expect that it will help. The weights of each 
layer are initialized randomly with zero-mean and unit-
variance. What’s more, the weights are controlled with 2ܮ/1ܮ  norm regularization to further improve the 
classification performance [2]. We tested 1-5 hidden layers 
and the results showed that using 3 hidden layers could obtain 
the best performance. After performing grid search runs, we 
obtain the best architecture of the DNN model, which 
consisted of 3 hidden layers and the number of hidden units 
in each hidden layer was [50,50,50]. The constants ߚ ߛ ,  rate are hyper-parameters whose values are  ݐݑ݋݌݋ݎ݀ , 
determined using a validation set. The ߚ is fixed to 1 and the ߛ is fixed to 10.  The learning rate is initially set as 0.001. To 
overcome the overfitting problem, the  ݀ݐݑ݋݌݋ݎ rate was 
fixed to 0.5. The learning curves of accuracy from the training 
and test data are shown in Fig. 2. 

To investigate the effectiveness of the proposed method, 
we compared the proposed method with several state-of-art 
methods. To avoid possible bias caused by certain 
partitioning of training and test samples, 10-folds cross 
validation which is known to be an unbiased estimator of the 
generalization performance of a classifier is performed. The 
data collected from each hospital were also split into 10 folds 
to balance the data. FNC features are used as the input of 
different machine learning methods. Table II shows the 
classification results achieved by four methods, including 
SVMRFE[19], Random Forest[20], AdaBoost classifier[21]. 
We also reshaped the 1225 features into 35*35 features to test 
the performance of convolutional neural network (CNN). The 
values in Table II are the averaged results of the 10-fold cross 
validation. We also compared the performance of  DNN with 
other models one by one according to the cross-validation 

results. The result show that the performance of DNN is 
significantly better than other methods (P<0.01). 

The classification accuracy, along with the sensitivity and 
specificity rates are then computed based on how many 
correct predictions are made with all the folds summed up 
against the sample size. In addition, we plot the ROC curves 
of these four methods in Fig. 3. In statistics, a receiver 
operating characteristic curve, or ROC curve, is a graphical 
plot that illustrates the performance of a binary classifier 
system as its discrimination threshold is varied. The top left 
corner of the ROC plot is the “ideal” point - a false positive 
rate of zero and a true positive rate of one. This is not very 
realistic, but it does mean that a larger area under the curve 
(AUC) is usually better.  As can be seen from Table 2 and Fig. 
3, for the binary classification problem, the proposed DNN 
method outperforms SVMRFE, Random Forests, AdaBoost 
and CNN in terms of classification accuracy, sensitivity and 
AUC measures. 

TensorFlow (https://www.tensorflow.org) was used 
with the above parameters to train the DNN model. The DNN 
classifier with three hidden layers were trained with a system 
consists of Intel(R) Xeon(R) CPU (3.60GHz), 32GB DDR3, 
and TITAN X (Pascal) GPU (12G). As for a model’s 
complexity, the DNN method requires more computational 
time and resources than the competing methods. However, 
the computational burden of our method is mostly involved 
in the computation during a training phase, which can be 
performed offline. In other words, the high computational 
burden or complexity affects only the training step, while the 
required computation for testing is only matrix-vector 
multiplication and simple nonlinear function operations. 

Table II   Performance comparison of several methods 

Methods ACC(%) SEN(%) SPEC(%) F 
DNN(proposed) 84.75 86.68 82.79 0.85 
SVMRFE [19] 77.09 76.36 77.85 0.77 
RandomForests[20] 76.81 77.05 76.81 0.77 
AdaBoost 70.98 71.31 70.63 0.71 
CNN 78.63 75.24 82.21 0.77 

Fig. 2. The learning curves of accuracy from the training and 
testing data. 

Fig. 3. Receive operating characteristic curves of different methods. 



 
3.2. Cross-site prediction 
  

The multi-site sample included brain structural MRI scans 
from 542 HCs and 558 SZs, acquired in seven different 
hospitals and on different MRI scanners. To test whether the  
model we proposed is robust enough, we perform the cross-
site validation by leaving out one site for testing each time 
and using the other six sites to train the model. This procedure 
goes through all seven sites, i.e. a leave-one-site-out cross- 
validation (See Table ). Finally, we averaged results of 
seven sites prediction as the final cross-site prediction 
accuracy. The result indicates that the DNN model we 
proposed is generalizable enough to do multi-site prediction 
task. To visualize the performance of DNN classifier, we 
visualized the last hidden layer of DNN with tSNE method 
[22]. 6 sites (951 subjects) are used as training data and 
1site(149 subjects) as testing data. The result is also displayed 
on a 2D map which indicates that the proposed DNN model 
can successfully distill details and pull the classes apart. 
 
3.3. Feature selection with LRP 
 
Most of the functional connectivity features are redundant to 
classification and only a small number of them are 
significantly relevant to the behavioral symbols of 

schizophrenia. We are interested in which features 
contributed most to group discrimination. The goal is 
achieved by exploiting the quantitative advantage of the LRP 
model, whereby features with the greatest absolute weight 
value could be factored out.  

In the experiments, the procedure of extracting the most 
informative features is as follow: Firstly, each subject in test 
data set is used as the input of the trained DNN model. The 
outputs of the test subjects are figured out with forwarding 
propagation algorithm. According to the formula(3), for each 
subject, the DNN output value (softmax result) is used as the 
input of the LRP model to project the heat map. To eliminate 
the irrelevant features and select the most discriminative 
features, firstly, we selected the top 200 features of each 
subject according to its heat map value. After that, the 
frequency of each feature is counted. Finally, the top30 
features are selected according to their frequency. Moreover, 
the selected features are visualized with BrainnetViewer  
(https://www.nitrc.org/projects/bnv/). 

With the novel feature selection strategy, some 
functional connectivity between certain brain regions of the 
frontal network and subcortical network are found to exhibit 
the highest discriminative power. The regions have long been 
demonstrated important for execution, decision-making, and 
working memory, which are key components of evaluating 
the cognitive deficit. 
 

4. CONCLUSION 
 
In the present study, the DNN classifier model trained with 2ܮ/1ܮ norm regularization (dropout and batch normalization) 
demonstrated the feasibility of the DNN classifier toward the 
automated diagnosis of SZ patients by using resting-state 
FNC patterns as input patterns. The proposed DNN classifier 
significantly improved performance for the diagnosis of SZ 
patients from HC subjects relative to several conventional 
machine learning methods. The cross-site prediction 

Table III    Results of the classification models 
Test Site M/F ACC SEN SPEC F score 
Site 1 98/93 80% 75% 85% 0.78 
Site 2 60/83 80% 77% 85% 0.79 
Site 3 102/81 84% 80% 87% 0.82 
Site 4 69/49 81% 90% 75% 0.85 
Site 5 55/90 79% 78% 80% 0.78 
Site 6 89/82 82% 82% 83% 0.82 
Site 7 69/80 85% 86% 83% 0.85 
Total 542/558 82% 81% 83% 0.81 

Fig. 5. Visualization of the top 30 significant features pertaining to 
SZ and HC classification 

Fig. 4. Visualization of 1100 subjects of the last hidden layer by t-
SNE. The color differentiates the class (patients and controls) and 
the training (Site 1-6: 951 subjects) from testing (Site 7: 149 
subjects) data. 



accuracy suggests high robustness and generalization 
performance of the proposed method. Moreover, to the best 
of our knowledge, this is the first attempt of combining DNN 
with LRP for brain disease classification using resting state 
fMRI data. We have provided a showcase of how LRP can 
add an explanatory layer to the highly effective technique of 
DNN in the fMRI domain. Our results show that LRP 
provided highly detailed accounts of relevant information in 
high-dimensional fMRI data that may be useful in analysis 
scenarios where single trials need to be considered 
individually. 
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