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Abstract—Imaging data collected from different sites is 

difficult to pool together due to unwarranted variations 

introduced by different acquisition protocols or scanners. Data 

harmonization is an effective way to mitigate site-specific bias 

while preserving the intrinsic image properties, thereby 

increasing the sample size and enhancing the generalization of 

models. Although various harmonization methods exist, their 

performance on specific tasks is often unsatisfactory. Here, we 

proposed a novel approach, CGDM-GAN, by combining the 

advantages of generative models, maximum discrepancy theory, 

and gradient discrepancy minimization with self-supervised 

learning to harmonize site effects and improve cross-site 

classification performance. The proposed CGDM-GAN was 

successfully conducted on synthetic dataset, and further 

validated on in-house and ABCD datasets, outperforming three 

data harmonization methods, including ComBat, CycleGAN, and 

MCD-GAN, suggesting its potential for removing site effects and 

improving cross-site neuroimaging classification.  

Keywords—Harmonization, Maximum Classifier Discrepancy, 

Generative Adversarial Network，Self-supervised Learning 

I. INTRODUCTION 

Multi-site neuroimaging collaboration is a powerful 
strategy for overcoming the small-sample problem . However, 
magnetic resonance imaging (MRI) acquired using different 
scanners, protocols, head motion and recruitment disparities 
may introduce significant heterogeneity, thereby reducing the 
accuracy and reproducibility across studies [1-3]. However, 
Meta-regression studies have shown that the accuracy of 
pooled classification performances is significantly affected by 
sample size [1]. Consequently, it is essential to remove task-

irrelevant confounds to improve the outcomes of large-cohort 
studies. 

Non-biological confounds tend to have unpredictable 
distributions, making their proper removal challenging. To 
address this issue, researchers have developed a variety of 
harmonization methods designed to mitigate the effects of non-
biological confounds, which can be categorized into dataset 
harmonization and domain adaptation. Dataset harmonization 
approaches, such as ComBat [4], are commonly used to handle 
non-biological variance. Domain adaptation trains task-specific 
models while harmonizing the feature by mapping the features 
into a shared task-specific subspace [5-7].  

 

Fig 1. Previous methods only focus on classifier discrepancy and overlook the 
accuracy of target samples. 

The deep generative adversarial model with the superiority 
of adversarial training strategy has been successfully applied to 
both the data harmonization and domain adaptation fields [6, 
8]. For example, [8] proposed CycleGAN to solve style 
transfer problems and [9] proposed MCD-GAN by combining 
CycleGAN (data harmonization) with maximum classifiers 
discrepancy (domain adaptation) to harmonize the datasets 
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from different scanners without mapping the original features 
to a lower-dimensional subspace. However, maximum 
classifiers discrepancy [7] only focused on the similarity of the 
outputs between two distinct classifiers and cannot guarantee 
the accuracy of target labels, resulting in less robust and 
discriminative features. Therefore, the cross-domain gradient 
discrepancy minimization (CGDM) approach can be a remedy 
by incorporating self-supervised labels into models, which can 
enhance the  classification accuracy of the target domain label 
[4].  

 

Fig 2.  The framework of the proposed CGDM-GAN. 1) MCD and 
CycleGAN (black line) for data harmonization and domain adaptation. 2) 

Source samples supervised (green line) and Target samples self-supervised 

(orange line) for optimizing 1classifier  and 2classifier . 3) Cross-domain 

gradient discrepancy minimization (blue line) for improving the accuracy of 
the target domain. 

In this study, we propose a CGDM-GAN harmonization 
method, which combines a gradient difference minimization 
method to explicitly reduce the discrepancy between the 
gradient vectors generated from source and target domain 
samples. Pseudo-labels are used for self-supervised learning to 
reduce ambiguous target samples and achieve accurate class-
level distribution alignment through gradient vector alignment. 
The proposed CGDM-GAN has three main highlights: 1) The 
gradient discrepancy minimization is utilized as a supervised 
signal to improve the accuracy of the labels for samples in the 
target domain. 2) Improving task-specific performance across 
multiple neuroimaging datasets. The proposed CGDM-GAN 
outperforms current state-of-the-art harmonization methods 
using both the Adolescent Brain Cognitive Development 
(ABCD) dataset and our in-house datasets. 

II. METHODS AND MATERIALS 

A. CGDM-GAN network 

As shown in Fig. 2, CGDM-GAN framework proposed 
consists of three modules: CycleGAN for data harmonization, 
Maximum Classifier Discrepancy (MCD) for domain 

adaptation, and Cross-domain Gradient Difference 
Minimization (CGDM) for improved accuracy in the target 
domain. This architecture builds upon our previous integration 
MCDGAN (As shown in the black line in Fig. 2) [9] of 
CycleGAN and MCD, introducing CGDM to enhance the 
removal of site effects. Specifically, CycleGAN is primarily 
designed for style transfer between different domains, ensuring 
the transformation maintains stylistic coherence. The MCD 
leverages two classifiers to analyze the target domain, aiming 
to maximize their prediction differences. This discrepancy is 
then minimized by training the generator. CGDM aligns 
gradient across source and target domains, enhancing domain 
adaptation by precisely minimizing gradient discrepancies. 
This approach significantly improves target domain accuracy 
by ensuring that the learning process for both domains is 
closely harmonized, thus facilitating a more effective 
generalization to the target domain. Our training strategy 
employs a phased approach, initially leveraging CycleGAN 
and MCD to improve classification in the target domain. 
CGDM is introduced in later stages, optimizing its 
effectiveness once pseudo-label accuracy is enhanced.  

B. CGDM-GAN loss functions  

Adversarial loss: The adaptation process helps in domain 

alignment by learning features in both directions, and employ 

the following definition: 
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where
s

D and
t

D are discriminators corresponding to the source  

and target domains.
s t

D
→

is the generator mapping source 

features to the target domain, and
t s

D
→

is the generator to map  

target features to the source domain. ( , , )
s t t ss sL G G D

→ →
is source 

domain loss, ( , , )
s t t st tL G G D

→ →
is target domain loss. 

Cycle consistency loss: The cycle consistency loss was also 

applied to regularize the two generators. The loss for cycle 

consistency is as follows: 
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Hereafter, the CycleGAN loss is weighted sum of the 

adversarial loss and cycle-consistency loss: 
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where λ is the hyperparameter to control the ratio between 

adversarial loss and cycle-consistency loss. 

Classification loss: The classifiers are trained on source 

domain samples. The loss function is as follows: 
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where L denotes the cross-entropy loss and k denotes the 

number of classes. 

Max classification discrepancy loss: We utilizes the absolute 

value of the probabilistic output differences between two deep 

learning classifiers as the basis for calculating discrepancy 

loss: 
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where the
1( )

k

sclassifier x and
2 ( )

k

sclassifier x denote probability 

output of
1( )sclassifier x and

2 ( )sclassifier x for 

class k respectively. 

Identify mapping loss: To ensure that the identity of the 

target domain is the same as the source domain and further 

stabilize the training procedure, as used in [10], we require the 

generator to be the identity mapping if the real samples of the 

target domain are provided as the input to the generator. The  

loss function is as follows: 
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The identity mapping loss acts as an effective stabilizer at the  

early stage of training.  

Gradient Discrepancy loss: Inspired by [5], to learn a 

classifier that can correctly classify all samples from both 

domains, the gradient vectors produced by source and target 

samples should be similar. We denote expected gradients over 

source and target examples as
sg and

tg respectively, and 

formulate appropriate gradient for source samples as follows: 
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θ
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 value, classifier, classifier number, source training sets, 

training sets label, thi source training sample, thi source training 

sample label and derivative of
nf concerningθ respectively. For 

computing the gradient generated by the target samples, we 

assign pseudo-labels to target samples, denoted by *
y  To 

mitigate the impact of potentially incorrect pseudo-labels on 

ambiguous target samples. The formulation for the gradient  

vector of the target samples is as follows: 
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Here w

ceL  is the weighted cross entropy loss function which is  

formulated as follows: 
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where δ represents the softmax output and E denotes the 

standard information entropy. Currently, we have obtained 

gradient vectors for both source and target samples. To align 

the domain distribution, we formulate the discrepancy as   

follows: 
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GDL employs cosine similarity to capture the discrepancy 

between source and target domains, while also incorporating 

semantic information for distribution alignment. 

Pseudo-label classification loss: We use softmax outputs 

from two classifiers to assign pseudo-label *

iy for each target 

sample i . To improve model classification performance 

through self-supervised learning, we utilize pseudo-labeled 

target samples to encourage correct decision boundary 

towards the discriminative target distribution. The weighted 

classification loss *
( , )

W t

clsL x y for self-supervised learning can 

be formulated as follows: 

2* *

1 1

1
( , ) ( ( ( )), )

2

tnW t W t
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t
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n = =
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Therefore, by improving the discriminability of the target 

distribution, we can further align samples between two  

domains at a category level. 

C. CGDM-GAN training steps 

Step-1: First, to pre-train CycleGAN. Specifically, train the 

generator ( , )
s t t s

G G
→ →

and discriminator ( , )
s t t s

D D
→ →

on source 

domain
sX , target domain

tX and fake data t

fakeX  generated 

by
s t

G
→

compute adversarial loss, and cycle loss, and identify 

loss. Update , , ,
s t t s s t t s

G G D D
→ → → →

parameters. All the above 

processes are conducted through the Eq. (1) ~ (4) and Eq. (7).  

Step-2: Second, to train two classifiers (
1F  and 

2F ). 

Specifically, train classifier
1 2( , )F F on s

sameX generated 

by
t s

G
→

on sX . 2) Get the pseudo-label of the target sample 

through two classifiers. 3) Compute classification loss, and 

max classification discrepancy loss through Eq. (5), Eq. (6),  

and Eq. (12). 4) Update classifier
1 2( , )F F parameters. 

Step-3: Third, use self-supervised learning and cross-domain  

gradient discrepancy minimization to optimal generator model.  

Specifically, 1) Compute gradient discrepancy loss, max  

classification discrepancy loss, and adversarial loss through  

Eq. (8) ~ (11), Eq. (1), Eq. (2), and Eq. (6). 2)  

Update
t s

G
→

parameters.   

D. Data and preprocessing 

ABCD MRI cortical thickness features: In GE, the 

mean months are 118.2±7.6., there are 1417 Male and 1,291 

Female subjects. In SIEMENS, the mean months are 

119.3±7.5, there are 1641 Male and 1431 Female subjects.  

In-house Dataset: The dataset is from two sites. Site 1 has 

158 schizophrenia patients and 176 normal controls. Site 2 has 

69 schizophrenia patients and 49 normal controls. 

ABCD MRI volumes: T1 MRI volumes collected using 

GE and SIEMENS scanners. In GE scanner, there are 1362 

Male and 1,281 Female subjects. In SIEMENS scanner, there 

are 1585 Male and 1370 Female subjects. The preprocessed 

gray matter volume images had a dimensionality of 121 × 145 
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× 121 in the voxel space, with the voxel size of 1.5 × 1.5 × 

1.5 3mm .   

Simulated data (Double moon): The dataset comprises 

2000 samples, with 1000 subjects per site (Site1 and Site2). 

Each site consists of two categories. Site2 is derived by 

rotating Site1 counterclockwise by an angle of 45 degrees. 

III. RESUTLS 

As shown in Fig. 3(a), before harmonization, the 

distribution of site1 and site2 are decentralized based on t-

SNE visualization of double moon simulated data. However, 

Fig. 3(b) shows that the two sites are well harmonized after 

the proposed CGDM-GAN harmonization. 

 
Fig 3. (a) Before harmonizing the double moon simulated data. (b) After 
harmonizing the double moon simulated data using the proposed CGDM-

GAN. 

As shown in TABLE I, the performance of the proposed 

CGDM-GAN was compared with ComBat and CycleGAN, 

MCD-GAN using multiple datasets. Table I shows the 

classification performance on the simulated double moon, In-

house, and ABCD datasets. The results show that the proposed 

CGDM-GAN outperforms the three compared state-of-the-art 

harmonization methods on the cross-site classification task.  

TABLE I. Comparison of methods on datasets. 

 

Data 

No 

harmony 

ComBat Cycle

GAN 

MCD-

GAN 

CGDM-

GAN 

Cortical 

thickness 

Train 67.7% 67.2% 66.5% 66.8% 67.5% 

Test 63.2% 65.7% 65.7% 66.0% 67.1% 

In-house Train 99.1% 98.3% 99.1% 97.4% 98.3% 

Test 72.5% 75.1% 75.2% 76.0% 77.2% 

sMRI Train 99.2% 98.4% 98.4% 98.2% 98.3% 

Test 67.5% 86% 86.6% 87.1% 88.2% 

Simulated 

data 

Train 99.7% 99.8% 100% 99.8% 99.8% 

Test 67.8% 81.1% 96.1% 98.2% 98.8% 

IV. DISCUSSION 

Properly addressing site-related confounds is crucial for 
achieving reproducible results in multi-site studies. However, 
conventional methods of data harmonization do not incorporate 
gradient discrepancy minimization with pseudo-labels to 
enhance the accuracys of the target domain label, resulting in 
poor performance. Our proposed CGDM-GAN has advantages 
in three aspects: 1) The gradient discrepancy minimization is 
utilized as a supervised signal to improve the accuracy of the 
labels for samples in the target domain. 2) Harmonizing the 
datasets from different scanners without mapping the original 
features to a lower-dimensional subspace. 3) Improving task-
specific performance across multiple neuroimaging datasets. 

     Obtaining pseudo-labels is a critical issue. In our research, 

we attempted to use clustering for obtaining pseudo-labels. 

However, the visualization results indicate that clustering 

labels decreases the performance of data harmonization across 

classes. Therefore, we opt to utilize the results from dual 

classifiers for obtaining pseudo-labels. Additionally, the 

training strategy of CGDM-GAN requires attention, and the 

optimal training scheme suggests initiating supervised 

learning of pseudo-labels and backpropagation of gradient 

similarity loss in the middle and late stages of training, which 

will enhance the effectiveness of the training. 

V. CONCLUSIONS 

In summary, we propose a novel approach, CGDM-GAN, 
which leverages the strengths of generative model, maximum 
discrepancy classifier, and gradient discrepancy minimization 
with self-supervised learning, for harmonizing the confounds 
while training the classifiers to improve the cross-site/scanner 
classification performance. The proposed approach 
outperforms ComBat, CycleGAN, and MCD-GAN, on a 
simulated, an In-house and ABCD datasets, demonstrating its 
superiority of the cross-site reproducibility of neuroimaging 
findings. 
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